10 СТЕРЕОМЕТРИЯ

10.1 ОСНОВНЫЕ ПОНЯТИЯ И ФОРМУЛЫ

МНОГОГРАННИКИ

Теорема Эйлера

Если V – число вершин, R – число ребер, G – число граней выпуклого многогранника, то справедливо равенство:

$$V-R+G=2$$
.

Призма

Основание – равные многоугольники; боковые грани – параллелограммы.

$$S_{6}=P_{\mathrm{c}}\cdot l$$
 – площадь боковой поверхности; $V=S\cdot H=S_{\mathrm{c}}\cdot l$ – объем призмы,

l – боковое ребро, P – периметр основания, S – площадь основания, H – высота, $P_{\rm c}$ – периметр перпендикулярного сечения, $S_{\rm c}$ – площадь перпендикулярного сечения.

Прямая призма – боковые ребра перпендикулярные плоскости основания.

$$S_{0} = P \cdot l$$
.

Правильная призма – прямая призма, основанием которой является правильный многоугольник.

Параллелепипед – основание призмы есть параллелограмм.

Прямоугольный параллелепипед – прямая призма, основанием которой является прямоугольник.

$$S_{6} = P \cdot h;$$

$$V = abc;$$

$$d^{2} = a^{2} + b^{2} + c^{2},$$

a, b, c – длины ребер, исходящих из общей вершины,

d – диагональ параллелепипеда.

 $Ky\delta$ — прямоугольный параллелепипед, у которого длины всех ребер равны (a).

$$V = a^3;$$

$$d = a\sqrt{3}.$$

Пирамида

Основание – многоугольник; боковые грани – треугольники, сходящиеся в одной вершине.

$$V = \frac{1}{3}S \cdot H$$
 – объем пирамиды,

S – площадь основания, H – высота.

Правильная пирамида – основание есть правильный многоугольник.

$$S_6 = \frac{1}{2} P \cdot l$$
 – площадь боковой поверхности,

P – периметр основания, l – апофема (высота какой-либо боковой грани правильной пирамиды).

Усеченная пирамида – верхняя часть пирамиды, отсечена плоскостью параллельной основанию.

$$V = \frac{1}{3}h(S_1 + S_2 + \sqrt{S_1S_2}),$$

где h – высота, S_1 и S_2 – площади оснований.

Правильная усеченная пирамида – основания есть правильные подобные многоугольники.

$$S_6 = \frac{1}{2} (P_1 + P_2) \cdot l \,,$$

где P_1 и P_2 – периметры оснований, l – апофема.

ТЕЛА ВРАЩЕНИЯ

Прямой круговой цилиндр и прямой круговой конус

 $\Omega_{\scriptscriptstyle
m L}=2\pi Rh$ – боковая поверхность цилиндра,

 $S_{\scriptscriptstyle
m L}=2\pi R(h+R)$ – полная поверхность цилиндра,

 $V_{_{\mathrm{II}}}=\pi R^2 h$ – объем цилиндра,

 $\Omega_{\kappa}=\pi R l$ – боковая поверхность конуса,

 $S_{_{\mathrm{K}}}=\pi R(l+R)$ – полная поверхность конуса,

$$V_{\rm k} = \frac{\pi}{3} h R^2$$
 – объем конуса,

 $\Omega_{\rm v, \kappa} = \pi (R + R_1) l$ – боковая поверхность усеченного конуса,

$$V_{
m y.\kappa} = \frac{\pi}{3} h(R^2 + R_1 R + R_1^2)$$
 – объем усеченного конуса,

R — радиус круга, лежащего в основании тела вращения, h — высота, l — образующая конуса, $R_{\rm l}$ — радиус «верхнего» основания усеченного конуса.

Шар и шаровой сегмент

$$S_{\rm m} = 4\pi R^2$$
 – поверхность шара,

$$V_{\text{ш}} = \frac{4}{3}\pi R^3$$
 – объем шара,

 $\Omega_{\rm c} = 2\pi Rh$ – площадь поверхности шарового сегмента,

$$V_{\rm c} = \pi h^2 \left(R - \frac{h}{3} \right)$$
 – объем шарового сегмента,

R – радиус шара, h – высота сегмента.

Шар и многогранник

- 1. Если многогранник вписан в шар, то вокруг каждой из его граней можно описать окружность.
- 2. Если шар вписан в многогранник, то его центр равноудален от всех граней и лежит на пересечении плоскостей, делящих двугранные углы многогранника пополам.

Прямой круговой цилиндр и прямой круговой конус

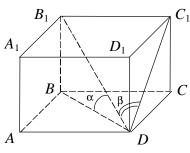
Обозначения:

h — высота цилиндра или конуса;

R – радиус круга, лежащего в основании;

 R_1 – радиус верхнего основания усеченного конуса;

L – образующая конуса.


- 1. Боковая поверхность цилиндра $S_{\sigma} = 2\pi \cdot R \!\!\! / \!\!\! n$.
- 2. Полная поверхность цилиндра $S_{\Pi} = 2\pi \cdot R \cdot (h+R)$.
- 3. Объем цилиндра $V = \pi \cdot R^2 \cdot h$.
- 4. Боковая поверхность конуса $S_{\sigma} = \pi \cdot R \times L$.
- 5. Полная поверхность конуса: $S_{\Pi} = \pi \cdot R \cdot (L + R)$.
- 6. Объем конуса: $V = \frac{\pi}{3} \cdot h \Re^2$.
- 7. Объем усеченного конуса: $V = \frac{\pi}{3} \cdot h \cdot (R^2 + R_1 R + R_1^2)$.
- 8. Боковая поверхность усеченного конуса $S_{\sigma} = \pi \cdot (R + R_1) \cdot L$.

10.2 ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

1. Диагональ прямого параллелепипеда составляет с плоскостью основания угол α , а с боковой гранью угол β . Высота параллеленинеда равна h. Найдите объем параллелепипеда.

Решение.

По условию $\angle B_1DB = \alpha$, $\angle B_1DC_1 = \beta$, $AA_1 = BB_1 = CC_1 = DD_1 = h$. Треугольник DBB_1 – прямоугольный,

$$C_1$$
 следовательно, $BD = \frac{BB_1}{\mathrm{tg}\alpha} = \frac{h}{\mathrm{tg}\alpha}, \ B_1D = \frac{BB_1}{\sin\alpha} = \frac{h}{\sin\alpha}.$ Треугольник DB_1C_1 – прямоугольный, значит

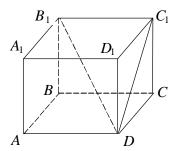
Треугольник DB_1C_1 – прямоугольный, значит

$$B_1C_1 = B_1D \cdot \sin\beta = \frac{h\sin\beta}{\sin\alpha}.$$

$$AB = \sqrt{BD^2 - AD^2} = \sqrt{BD^2 - B_1C_1^2} =$$

$$= \sqrt{\frac{h^2}{\lg^2\alpha} - \frac{h^2\sin^2\beta}{\sin^2\alpha}} = \frac{h}{\sin\alpha}\sqrt{\cos^2\alpha - \sin^2\beta}.$$

$$V = AB *B_1 B *AD = \frac{h}{\sin \alpha} \sqrt{\cos^2 \alpha - \sin^2 \beta} \cdot h \cdot \frac{h \sin \beta}{\sin \alpha} =$$
$$= \frac{h^3 \sin \beta}{\sin^2 \alpha} \sqrt{\cos^2 \alpha - \sin^2 \beta}.$$

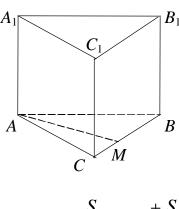

Omeem:
$$\frac{h^3 \sin \beta}{\sin^2 \alpha} \sqrt{\cos^2 \alpha - \sin^2 \beta}.$$

2. Определите объем правильной четырехугольной призмы, если ее диагональ образует с плоскостью боковой грани угол 30°, а сторона основания равна 3 см.

Решение.

По условию
$$AB = BC = CD = AD = A_1B_1 = B_1C_1 = C_1D_1 = A_1D_1 = 3$$
 см,

 $\angle B_1D\ C_1=30^\circ$. Треугольник DB_1C_1 – прямоугольный , следовательно, $C_1D=\frac{B_1C_1}{\mathrm{tg}30^\circ}=\frac{3\cdot 3}{\sqrt{3}}$ $C_1C=\sqrt{DC_1^{\ 2}-DC^2}=\sqrt{27-9}=3\sqrt{2}.$



$$V = AD^2 \cdot C_1 C = 9 \cdot 3\sqrt{2} = 27\sqrt{2}.$$

Ответ: $27\sqrt{2}$ см³.

3. Основанием прямой призмы служит равнобедренный треугольник, в котором основание равно a, и угол, прилежащий к нему, равен α . Определите объем призмы, если ее боковая поверхность равна сумме площадей ее оснований.

Решение.

$$B_1$$
 По условию $AC = AB = A_1C_1 = A_1B_1$, $CB = C_1B_1 = a$, $\angle ABC = \angle ACB = \alpha$. Треугольник ABC — равнобедренный, AM \bot CB \Rightarrow CM $=$ MB и $AC = \frac{CM}{\cos\alpha} = \frac{a}{2\cos\alpha} = AB$, $AM = CM \cdot tg\alpha = \frac{a}{2} \cdot tg\alpha$.

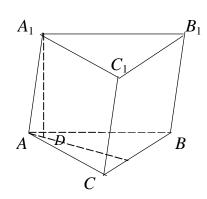
$$S_{AA_{1}C_{1}C} + S_{CC_{1}B_{1}B} + S_{AA_{1}B_{1}B} = AA_{1}(AC + CB + AB) =$$

$$= AA_{1}\left(\frac{a}{\cos\alpha} + a\right) = AA_{1} \cdot a \cdot \frac{1 + \cos\alpha}{\cos\alpha}.$$

$$S_{ABC} = \frac{1}{2}AM \cdot BC = \frac{1}{2} \cdot \frac{a}{2} \operatorname{tg}\alpha \cdot a = \frac{a^{2}}{4} \operatorname{tg}\alpha \implies AA_{1} \cdot a \cdot \frac{1 + \cos\alpha}{\cos\alpha} = \frac{a^{2}}{2} \operatorname{tg}\alpha \Longrightarrow$$

$$AA_{1} = \frac{a\sin\alpha}{2(1+\cos\alpha)} = \frac{a \cdot 2\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}}{2 \cdot 2\cos^{2}\frac{\alpha}{2}} = \frac{a}{2}\operatorname{tg}\frac{\alpha}{2}.$$

$$V = S_{ABC} \cdot AA_1 = \frac{a^2}{4} \operatorname{tg}\alpha \cdot \frac{a}{2} \operatorname{tg}\frac{\alpha}{2} = \frac{a^3}{8} \operatorname{tg}\alpha \cdot \operatorname{tg}\frac{\alpha}{2}.$$


Ответ:
$$\frac{a^3}{8}$$
tg $\frac{\alpha}{2}$ ·tg α .

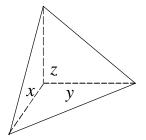
4. Найдите объем наклонной призмы, основанием которой служит равносторонний треугольник со стороной m, если длина бокового ребра L, а угол между ребром и плоскостью основания равен 60° .

Решение.

По условию AB = BC = AC = m, A_1 $AA_1 = BB_1 = CC_1 = L$, $A_1D \perp$ плоскости ABC, $A_1AD = 60^\circ$. Треугольник $ADA_1 -$ прямоугольный, следовательно, $A_1D = A_1AD = A_1AD$

$$AA_1 \cdot \sin 60^{\mathbf{0}} = L \cdot \frac{\sqrt{3}}{2}.$$

$$S_{ABC} = \frac{m^2 \sqrt{3}}{4}, \ V = S_{ABC} \cdot A_1 D = \frac{m^2 \sqrt{3}}{4} \cdot L \frac{\sqrt{3}}{2} = \frac{3m^2 L}{8}.$$

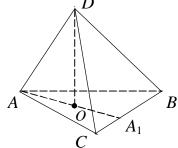

Ответ:
$$\frac{3}{8}m^2L$$
.

5. Боковые грани треугольной пирамиды взаимно перпендикулярны, величины их площадей равны 8, 9, 16 см². Определите объем пирамиды.

Решение.

Ребра боковых граней пирамиды взаимно перпендикулярны. Пусть их длины – x, y, z. Тогда по условию $\frac{1}{2}xz = 8$, $\frac{1}{2}yz = 9$, $\frac{1}{2}xy = 16$.

$$\begin{cases} xz = 16 \\ yz = 18 \Rightarrow x^2 y^2 z^2 = 16 \cdot 18 \cdot 32 \Rightarrow xyz = 96. \\ xy = 32 \end{cases}$$


$$V = \frac{1}{3}z \cdot \frac{1}{2}xy = \frac{1}{6}xyz = 16.$$

Ответ: 16 см³.

6. Вычислите объем правильной треугольной пирамиды, длины всех ребер которой равны $6\sqrt{2}$.

Решение.

По условию $AB = BC = AC = AD = CD = BD = 6\sqrt{2}$. Треугольник D = ABC - D равносторонний, следовательно,

$$\angle ACB = 60^{\circ}, S_{ABC} = \frac{(6\sqrt{2})^2 \sqrt{3}}{4} = 18\sqrt{3}.$$

Опустим перпендикуляр DO на плоскость треугольника ABC, (\cdot) O — точка пересечения высот треугольника ABC. AA_1

$$\perp$$
 CB и $AA_1 = AB \cdot \sin 60^\circ = 6\sqrt{2} \cdot \frac{\sqrt{3}}{2} = 3\sqrt{6}$.

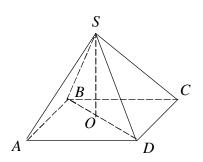
 AA_1 – медиана треугольника ABC.

$$AO = \frac{2}{3}AA_1 = 2\sqrt{6}$$
 (по свойству медиан).
$$DO = \sqrt{AD^2 - AO^2} = \sqrt{72 - 24} = \sqrt{48} = 4\sqrt{3}.$$

$$V = \frac{1}{3} \cdot S_{ABC} \cdot DO = \frac{1}{3} \cdot 18\sqrt{3} \cdot 4\sqrt{3} = 72.$$

Ответ: 72.

7. Боковое ребро правильной четырехугольной пирамиды равно m и составляет с плоскостью основания угол α . Найдите объем пирамиды.


Решение.

По условию AS = BS = SC = SD = m, AB = BC = CD = AD. SO -высота, треугольник SDO -прямоугольный, $\angle SDO = \alpha$, $SO = SD \cdot \sin\alpha = m \cdot \sin\alpha$, $OD = m \cdot \cos\alpha$, $BD = 2 m \cdot \cos\alpha$. Диагональ квадрата $BD = \sqrt{2}AB \implies$

$$AB = \frac{BD}{\sqrt{2}} = \frac{2m \cdot \cos \alpha}{\sqrt{2}} = \sqrt{2}m \cdot \cos \alpha.$$

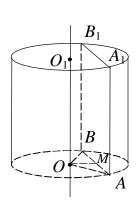
$$V = \frac{1}{3}SO \cdot S_{ABCD} = \frac{1}{3}SO \cdot AB^{2} =$$

$$= \frac{1}{3}m \cdot \sin \alpha \cdot 2m^{2} \cos^{2} \alpha = \frac{2}{3}m^{3} \cdot \cos^{2} \alpha \cdot \sin \alpha.$$

Omeem:
$$\frac{2}{3}m^3 \cdot \cos^2 \alpha \cdot \sin \alpha$$
.

8. В цилиндре параллельно его оси на расстоянии m от нее проведена плоскость, отсекающая от окружности основания дугу, которой соответствует центральный угол α . Площадь сечения равна S. Определите объем цилиндра.

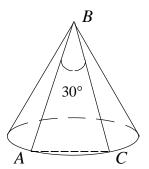
Решение.


По условию $\angle BOA = \alpha$, OM = m, $AB \times BB_1 = S$, $OM \perp AB$, треугольник OAB — равнобедренный, следовательно, OM — медиана и биссектриса. В прямоугольном треугольнике OAM

$$OA = \frac{OM}{\cos \frac{\alpha}{2}} = \frac{m}{\cos \frac{\alpha}{2}}.$$

$$AB = 2 \cdot AM = 2 \cdot OM \cdot \operatorname{tg} \frac{\alpha}{2} = 2m \cdot \operatorname{tg} \frac{\alpha}{2},$$

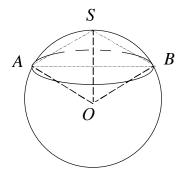
$$BB_1 = \frac{S}{AB} = \frac{S}{2m \cdot \operatorname{tg} \frac{\alpha}{2}}.$$


$$V = \pi \cdot OA^2 \cdot BB_1 = \pi \cdot \frac{m^2}{\cos^2 \frac{\alpha}{2}} \cdot \frac{S}{2m \cdot \operatorname{tg} \frac{\alpha}{2}} = \frac{\pi mS}{\sin \alpha}.$$

Ombem:
$$\frac{\pi mS}{\sin \alpha}$$
.

9. Радиус основания равностороннего конуса (в осевом сечении — правильный треугольник) равен 10 см. Найдите площадь сечения, проведенного через две образующие, угол между которыми равен 30° .

Решение.

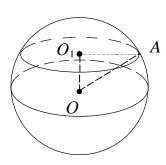

По условию $\angle ABC = 30^{\circ}$, R = 10 см. Длина образующей равностороннего конуса равна диаметру основания $\Rightarrow AB = BC = 2 \cdot R = 20$.

$$S = \frac{1}{2} \cdot AB \cdot BC \cdot \sin 30^{\circ} = \frac{1}{2} \cdot 20 \cdot 20 \cdot \frac{1}{2} = 100.$$

Ответ: 100 см².

10. Угол при вершине осевого сечения прямого кругового конуса равен 120°. Образующая конуса равна 6. Найдите радиус шара, описанного около этого конуса.

Решение.

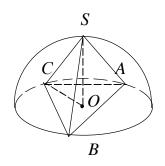


По условию AS = BS = 6, $\angle ASB = 120^\circ$. Центр шара — точка O; треугольники OAS и OBS равны. $\angle OSB = 60^\circ$, т.к. OS — биссектриса $\angle ASB$. OS = OB (радиусы шара), следовательно, $\angle SBO = \angle OSB = 60^\circ$ и треугольник OSB — равносторонний. Тогда OB = OS = SB = 6.

Ответ: 6.

11. Шар пересекается плоскостью, проходящей на расстоянии a от центра шара. Площадь сечения равна S. Найдите радиус шара.

Решение.

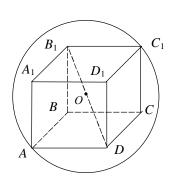

Пусть O – центр шара, O_1 – центр круга (сечения площади S). По условию $OO_1 = a$. $S = \pi \cdot O_1 A^2 \Rightarrow O_1 A^2 = \frac{S}{\pi}$. OO_1 перпендикулярно плоскости сечения, следовательно, треугольник OAO_1 – прямоугольный. Тогда $OA^2 = O_1 A^2 + OO_1^2 = a^2 + \frac{S}{\pi}$ и $OA = \sqrt{a^2 + \frac{S}{\pi}}$.

Omsem:
$$\sqrt{a^2 + \frac{S}{\pi}}$$
.

12. В полусферу радиуса R вписана треугольная пирамида, основанием которой служит равносторонний треугольник. Найдите объем пирамиды.

Решение.

$$O$$
 — центр сферы, следовательно, $OS = OC = R$. По условию $AB = BC = AC$, следовательно, $R = \frac{AB \cdot \sqrt{3}}{3}$ и $AB = R\sqrt{3}$. $S_{ABC} = \frac{AB^2 \sqrt{3}}{4} = \frac{3}{4}R^2 \sqrt{3}$. $V = \frac{1}{3}S_{ABC} \cdot OS = \frac{1}{3} \cdot \frac{3}{4}R^2 \sqrt{3} \cdot R = \frac{\sqrt{3}}{4}R^3$.



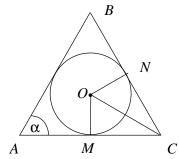
Ответ:
$$\frac{\sqrt{3}}{4}R^3$$
.

13. Найдите площадь поверхности сферы, описанной около куба с ребром a.

Решение.

По условию $AB = AD = AA_1 = a$. Пусть точка O – центр сферы, тогда $OD = OB_1 = R$. B_1D – диагональ куба, следовательно, $B_1D^2 = AB^2 + AD^2 + AA_1^2 \implies (2R)^2 = a^2 + a^2 + a^2 \implies R = \frac{a\sqrt{3}}{2}$.

$$S_{\text{сферы}} = 4\pi R^2 = 4\pi \frac{3a^2}{4} = 3\pi a^2.$$


Ответ: $3\pi a^2$.

14. В конус вписан шар. Площадь поверхности шара относится к площади основания конуса как 4:3. Найдите угол между образующей конуса и плоскостью основания.

Решение.

ABC – осевое сечение конуса с образующей L и радиусом основания R, O – центр вписанного шара радиуса r. По условию AB = BC = L, ON =

$$OM = r, MC = AM = R, \angle ACB = \angle BAC = \alpha, \frac{4 \pi r^2}{\pi R^2} = \frac{4}{3}.$$

Треугольники OMC и ONC равны, следовательно, $\angle ACO = \alpha/2$. Тогда

$$tg\frac{\alpha}{2} = \frac{OM}{MC} = \frac{r}{R} = \frac{1}{\sqrt{3}} \Rightarrow \frac{\alpha}{2} = \frac{\pi}{6} \Rightarrow \alpha = \frac{\pi}{3}.$$

Ответ: $\pi/3$.

10.3 ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

- 1. Определите объем прямого параллелепипеда, диагональ которого равна
- $2\sqrt{2}$ см и составляет с одной гранью угол в 30°, а с другой в 45°.

 $Omвет: 4 cm^3$.

2. Плоскость, проведенная через вершины AD_1C прямого параллелепипеда $ABDC_1A_1B_1D_1C_1$, образует угол 60° с плоскостью основания. Длины сторон основания равны 6 см и 8 см. Найдите объем параллелепипеда.

Ответ: 230,4 $\sqrt{3}$ см³.

3. В прямом параллелепипеде длины сторон основания 3 см и 5 см, а одна из диагоналей основания 4 см. Найдите длину большей диагонали параллелепипеда, зная, что меньшая диагональ образует с плоскостью основания угол 60° .

Ответ: 10 см.

4. В основании прямой призмы лежит прямоугольный треугольник, длина одного из катетов которого равна 3 см. Диагональ боковой грани призмы, проходящей через другой катет, составляет с плоскостью основания призмы угол 45°. Высота призмы равна 4 см. Найдите площадь полной поверхности призмы.

Ответ: 60 см².

5. В основании прямой призмы лежит прямоугольный треугольник, длина катетов которого равна 3 и 4 см. Плоскость, проходящая через вершины прямого угла верхнего основания и гипотенузу нижнего основания, составляет с ним угол 45°. Высота призмы равна 4 см. Найдите площадь полной поверхности призмы.

Ответ: 40,8 см².

6. Диагональ основания правильной четырехугольной пирамиды равна 14 см, боковое ребро 25 см. Вычислите объем пирамиды.

Ответ: 784 см³.

7. Найдите объем правильной четырехугольной пирамиды, если длина ее апофемы 8 см, а длина бокового ребра 10 см.

Ответ: $96\sqrt{7}$ см³.

8. В основании пирамиды лежит равнобедренный треугольник, у которого высота, опущенная на основание, равна h. Боковая грань пирамиды, проходящая через основание этого треугольника, перпендикулярна его плоскости. Каждое из двух лежащих в этой грани боковых ребер образует угол α с плоскостью основания и имеет длину L. Найдите объем пирамиды.

Omeem:
$$\frac{h \cdot L^2}{6} \sin 2a$$
.

9. Длины сторон основания и бокового ребра правильной шестиугольной пирамиды равны соответственно 3 см и 5 см. Найдите длину высоты пирамиды.

Ответ: 4 см.

10. Определите площадь боковой поверхности и объем цилиндра, если площадь основания цилиндра S, а площадь его осевого сечения P.

Omsem:
$$\pi P$$
; $P \frac{\sqrt{\pi S}}{2}$.

11. Вычислите площадь сечения, проведенного через вершину конуса под углом 30° к его высоте, если длина высоты конуса $3\sqrt{3}$ см, а радиус основания 5 см.

 $Oтвет: 24 \text{ cm}^2.$

12. В правильную усеченную четырехугольную пирамиду вписан шар диаметра d. Найдите объем пирамиды, если сторона нижнего основания равна a.

Omsem:
$$\frac{1}{3} \frac{d(a^4 + a^2d^2 + d^4)}{a^2}$$
.

13. Найдите объем шара, вписанного в усеченный конус, образующая которого равна $10~{\rm cm}$ и составляет угол в 45° с плоскостью основания.

Ответ:
$$125 \pi \frac{\sqrt{2}}{3} \text{ cm}^3$$
.

14. Найдите отношение объема шара, вписанного в правильную треугольную пирамиду, к объему шара, описанного около этой пирамиды.

Oтвет:
$$\sqrt{3}/9$$
.

10.4 КОНТРОЛЬНЫЕ ЗАДАЧИ ПО ТЕМАМ

Многогранники	Вариант 1
---------------	-----------

Hoi oi pann	ики вариант 1
$N_{\underline{0}}$	Задание
задания	
1	Определите число ребер призмы, имеющей 11 граней.
2	Стороны основания прямоугольного параллелепипеда равны 4 см и 3 см. Определите площадь боковой поверхности параллелепипеда, если его диагональ
2	наклонена к плоскости основания под углом 45°.
3	В прямом параллелепипеде стороны основания равны 4 см и 6 см и образуют угол 30°. Боковая поверхность равна 20 см ² . Определите объем параллелепипеда.
4	В правильной треугольной призме стороны основания равны 1 см, а площадь боковой поверхности равна $3\sqrt{15}$. Найдите длину диагонали боковой грани призмы.
5	Основанием прямой призмы служит равнобедренный треугольник, площадь которого равна $18~{\rm cm}^2$. Найдите площадь боковой поверхности призмы, если ее высота равна $2-\sqrt{2}~{\rm cm}$.
6	Основанием призмы является трапеция. Найдите объем призмы, если площади ее параллельных боковых граней равны 24 см ² и 8 см ² , а расстояние между ними равно 4 см.
7	Найдите угол наклона боковой грани правильной треугольной пирамиды к плоскости основания если сторона основания пирамиды $2\sqrt{6}$ см, а высота 1 см.
8	Основанием правильной пирамиды служит многоугольник, сумма внутренних углов которого равна 720°. Найдите объем пирамиды, если ее боковое ребро, равное 2 см, составляет с высотой пирамиды угол 30°.
9	Боковое ребро правильной усеченной четырехугольной пирамиды равно 5 см, площади оснований 72 см^2 и 18 см^2 . Найдите объем пирамиды.
10	Основанием пирамиды является прямоугольный
	треугольник с катетами 6 см и $6\sqrt{2}$ см. Каждое ее боковое ребро наклонено к плоскости основания под углом 60° . Найдите объем пирамиды.

<u>ногогранн</u>	ики вариант				
No	Задание				
задания					
1	Определите число граней усеченной пирамиды, если				
	число её вершин равно 8.				
2	Угол между диагоналями основания прямоугольного				
	параллелепипеда равен 30°. Диагональ				
	параллелепипеда составляет с плоскостью основания				
	угол 45°. Найдите высоту параллелепипеда, если его				
	объем равен 2 см ³ .				
3	Основанием прямого параллелепипеда служит				
	параллелограмм, один из углов которого равен 30°.				
	Найдите объем параллелепипеда, если площадь его				
	основания равна 4 см ² а площади боковых граней 6				
	cm^2 и 12 cm^2 .				
4	Найдите объем правильной треугольной призмы,				
	если сторона ее основания равна 2 см, а площадь				
	боковой поверхности равна сумме площадей				
	оснований.				
5	Основанием прямой призмы служит ромб, а площади				
	ее диагональных сечений равны 3 cm^2 и 4 cm^2 .				
	Найдите площадь боковой поверхности призмы.				
6	Найдите объем призмы, основанием которой служит				
	равносторонний треугольник со стороной 2 см, если				
	боковое ребро призмы равно стороне основания и				
	наклонено к плоскости основания под углом 60°.				
7	Найдите угол между боковым ребром и плоскостью				
	основания правильной треугольной пирамиды, если				
	сторона основания равна $2\sqrt{6}$, а высота пирамиды –				
	1 см.				
8	Найдите боковую поверхность правильной				
	шестиугольной пирамиды, высота которой равна 8				
	см, а боковое ребро равно 16 см.				
9	Найдите объем правильной четырехугольной				
	усеченной пирамиды, если ее диагональ равна 18 см,				
	а длины сторон оснований равны 14 см и 10 см.				
10	Основанием пирамиды служит равносторонний				
	треугольник с основанием $\sqrt{3}$ см и боковыми				
	сторонами 2 см. Найдите объем пирамиды, если				
	боковые ребра составляют с плоскостью основания				
	углы 60°				

ногогранн	ики вариант.				
$N_{\underline{0}}$	Задание				
задания					
1	Определите число ребер пирамиды, имеющей 9 вершин.				
2	Найдите объем прямоугольного параллелепипеда, если его диагональ равна 13 см, а диагонали его боковых граней равны $4\sqrt{10}$ см и $3\sqrt{17}$ см.				
3	Определите объем куба, если площадь сечения куба плоскостью, проходящей через три его несмежные вершины равна $4\sqrt{3}$ см ² .				
4	Наибольшая диагональ правильной шестиугольной призмы равна 4 см и составляет с боковым ребром призмы угол 30°. Найдите объем призмы.				
5	Основанием прямой призмы является равнобочная трапеция с боковой стороной 5 см и основанием 7 см и 3 см. Найдите площадь боковой поверхности призмы, если ее высота равна 12 см.				
6	Найдите объем наклонной треугольной призмы, у которой площадь одной из граней равна 24 см ² , а расстояние от плоскости этой грани до противолежащего ребра равно 5 см.				
7	Найдите длину бокового ребра правильной треугольной пирамиды со стороной основания 3 см и высотой 1 см.				
8	Найдите объем правильной четырехугольной пирамиды, если ее боковое ребро равно $\sqrt{3}$ см и равно диагонали квадрата, лежащего в основании пирамиды.				
9	Стороны оснований правильной треугольной усеченной пирамиды равны 3 см и 7 см. Найдите площадь боковой поверхности пирамиды, если ее ребро равно $2\sqrt{5}$ см.				
10	Основанием пирамиды служит параллелограмм со сторонами 10 см и 18 см и площадью 90 см ² . Высота пирамиды проходит через точки пересечения диагоналей и равна 6 см. Найдите боковую поверхность пирамиды.				

ногогранн	ики вариант 4				
№	Задание				
задания					
1	Определите число граней усеченной пирамиды, имеющей 9 ребер.				
2	Найдите угол наклона диагонали прямоугольного параллелепипеда к плоскости основания, если диагонали боковых его граней составляют с плоскостью основания углы 45° и $\operatorname{arcctg}\sqrt{2}$.				
3	В основании прямого параллелепипеда лежит параллелограмм со сторонами 1 см и 4 см и острым углом 60° . Найдите объем параллелепипеда, если его большая диагональ равна $\sqrt{33}$.				
4	Основанием параллелепипеда служит квадрат со стороной 13 см. Одна из вершин нижнего основания, одинаково удалена от всех вершин нижнего основания и удалена от плоскости этого основания на 2 см. Найдите полную поверхность этого параллелепипеда.				
5	Основанием прямой призмы является равнобедренный прямоугольный треугольник с гипотенузой $2\sqrt{2}$ см. Найдите объем призмы, если ее боковое ребро равно катету.				
6	Основанием призмы служит правильный треугольник со стороной 2 см. Длина бокового ребра составляет 6 см, а одно из боковых ребер образует с прилежащими сторонами оснований углы 45°. Найдите боковую поверхность призмы.				
7	Найдите углы между боковым ребром и плоскостью основания правильной треугольной пирамиды со стороной основания 3 см и высотой 1 см.				
8	Найдите объем правильной четырехугольной пирамиды, если ее боковое ребро составляет с плоскостью основания угол 45°, а площадь диагонального сечения равна 9 см ² .				
9	Стороны оснований правильной усеченной шестиугольной пирамиды равны 4 см и 2 см. Найдите объем пирамиды, если ее высота равна $\frac{\sqrt{3}}{3}$ см.				
10	Основанием пирамиды является прямоугольный треугольник с катетами 12 см и 5 см. Каждое ее боковое ребро наклонено к плоскости основания под углом 45°. Найдите объем пирамиды.				

Многогранники

Многогранники Ответы				тветы
№ варианта № задания	1	2	3	4
1 3адания	27	6	16	5
1				
2	70	2	144	30
3	18	12	16	12
4	4	1	9	48
5	12	10	312	4
6	64	3	60	$12(\sqrt{2}+1)$
7	$arctg \frac{\sqrt{2}}{2}$	$arcctg2\sqrt{2}$	2	30
8	$\frac{3}{2}$	$192\sqrt{3}$	0,75	18
9	168	872	60	14
10	$54\sqrt{2}$	1	192	65

Вариант 1

тела враг	цения вариант
$\mathcal{N}_{\underline{0}}$	Задание
задания	
1	Через конец радиуса шара под углом 60° проведена секущая плоскость. Найдите площадь полученного сечения, если площадь поверхности шара равна 64 см ² .
2	Найдите объем конуса, осевое сечение которого есть прямоугольный треугольник с площадью 4 см ² .
3	Найдите отношение объема цилиндра к объему вписанного в него шара.
4	Основанием конуса служит круг, вписанный в основание правильной четырехугольной призмы. Вершина конуса лежит на другом основании призмы. Найдите объем призмы, если объем конуса равен 17π см ³ .
5	Найдите радиус основания цилиндра равновеликого усеченному конусу с радиусом оснований 2 см и 11 см и той же высотой.
6	Найдите радиус шара, вписанного в конус, высота которого равна 8 см, а образующая равна 10 см.
7	Найдите отношение объема шара, описанного около правильной треугольной призмы, высота которой вдвое больше стороны основания, к объему призмы.
8	Около правильной треугольной призмы описан цилиндр. Площадь боковой поверхности цилиндра равна 14π см ² . Расстояние между осью цилиндра и диагональю боковой грани призмы равно $2\sqrt{3}$ см. Найдите объем призмы.
9	Разверткой боковой поверхности конуса является сектор с дугой 135°. Найдите угол при вершине осевого сечения конуса.
10	Найдите объем тела вращения, получающегося в результате вращения правильного треугольника со стороной 2 см, вокруг одной из сторон.

No	Задание				
задания	зидиние				
1	Шар пересечен плоскостью, отстоящей от центра				
	шара на $\frac{3}{\sqrt{\pi}}$ см. Найдите площадь сечения, если				
	площадь поверхности шара равна 48 см ² .				
2	Найдите объем конуса, если его высота равна 3 см, а				
	угол при вершине осевого сечения равен 120°.				
3	Найдите объем цилиндра, если площадь его боковой				
	поверхности равна 2 см 2 , а площадь основания 4π				
	cm^2 .				
4	Боковая поверхность конуса в три раза больше				
	площади основания. Найдите высоту конуса, если				
	радиус равновеликого ему шара равен 2 см.				
5	Найдите радиус основания конуса, равновеликого				
	усеченному конусу той же высоты с радиусами				
	оснований 3 см и 5 см.				
6	В шар вписан конус, высота и радиус основания				
	которого равны соответственно 3 см и $3\sqrt{3}$ см.				
	Найдите радиус шара.				
7	Найдите площадь полной поверхности правильной				
	шестиугольной призмы, описанной около шара				
	радиуса 1 см.				
8	В конус высотой 4 см и углом между высотой и				
	образующей 30° вписан конус так, что его вершина				
	находится в центре основания первого конуса, а				
	образующая перпендикулярна его образующей.				
_	Найдите объем вписанного конуса.				
9	Найдите отношение площади боковой поверхности				
	конуса к площади основания, если разверткой его				
	боковой поверхности является сектор с дугой 135°.				
10	Равнобедренная трапеция с основаниями 2 см и 6 см				
	и площадью 48 см ² вращается вокруг средней				
	высоты. Найдите объем тела вращения.				

Вариант 3

тела враг	цения вариант 3
<u>№</u>	Задание
задания 1	Площадь сечения шара плоскостью в 8 раз меньше площади поверхности шара. Найдите радиус шара, если
	расстояние от центра шара до секущей плоскости равно $\sqrt{2}$ см.
2	Найдите объем конуса, если его образующая наклонена к плоскости основания под углом 45°, а его осевое сечение есть равнобедренный треугольник с основанием 6 см.
3	Найдите отношение объема цилиндра, высота которого в 2 раза больше диаметра основания, к объему описанного около него шара.
4	Основанием конуса служит круг, вписанный в грань куба, а вершина конуса лежит на противоположной грани куба. Найдите объем конуса, если сторона куба равна 4 см.
5	Найдите угол, который составляет образующая конуса с плоскостью его основания, если длина образующей $\sqrt{3}$ см, а расстояние от вершины конуса до центра вписанного в него шара равно 1 см.
6	Найдите объем конуса, осевое сечение которого представляет собой равносторонний треугольник, если объем вписанного в него шара равен $\frac{32}{3}$ см ³ .
7	Найдите площадь боковой поверхности правильной восьмиугольной призмы, если в нее вписан шар, поверхность которого равна ($\sqrt{2}+1$) см ² .
8	Около шара описан усеченный конус, площадь нижнего основания которого в 4 раза больше площади верхнего основания. Найдите площадь боковой поверхности конуса, если радиус шара $2\sqrt{2}$ см.
9	Найдите площадь основания конуса, если развертка его боковой поверхности представляет собой треть круга радиуса 3 см.
10	Найдите объем тела вращения, полученного в результате вращения ромба с диагоналями $\sqrt{15}\mathrm{cm}$ и $\frac{60}{\pi}\mathrm{cm}$, вокруг большей диагонали.

Вариант 4

T COTTO D POUL	цения Вариант				
$N_{\underline{0}}$	Задание				
задания					
1	Плоскость сечения шара делит его радиус,				
	перпендикулярный этой плоскости в отношении 1:				
	3, считая от центра шара. Найдите площадь сечения,				
	если площадь поверхности шара равна 96 см ² .				
2	Найдите площадь полной поверхности конуса, если				
	его высота равна 4 см, а угол при вершине осевого				
	сечения равен 120°.				
3	Найдите площадь поверхности цилиндра, описанного				
	около шара, если площадь поверхности шара равна				
	330 cm^2 .				
4	В правильную четырехугольную пирамиду вписан				
	конус. Найдите объем конуса, если объем пирамиды				
	равен 3 см ³ .				
5	Около шара описан усеченный конус, у которого				
	площадь одного основания в четыре раза больше				
	площади другого. Определите угол, который				
	составляет образующая конуса с плоскостью				
	основания.				
6	В шар вписан конус, образующая которого равна				
	диаметру основания. Найдите отношение полной				
	поверхности конуса к поверхности шара.				
7	Найдите отношение поверхностей шаров описанного				
	и вписанного в правильную треугольную призму.				
8	В треугольную пирамиду, все ребра которой равны				
	между собой, вписан шар радиуса $\sqrt{3}$ см. Найдите				
	объем пирамиды.				
9	Найдите высоту конуса, если развертка его боковой				
	поверхности, представляет собой четверть круга				
	радиуса 60 см.				
10	Найдите площадь полной поверхности тела				
	вращения, полученного в результате вращения				
	6 8				
	прямоугольного треугольника с катетами $\frac{\sigma}{\sqrt{\pi}}$ и $\frac{\sigma}{\sqrt{\pi}}$				
	вокруг меньшего катета.				

Тела вращения			Ответы	
№ варианта				
	1	2	3	4
№ задания				
1	4	3	2	22,5
2	$\frac{8p}{3}$	27π	9π	$16p(3+2\sqrt{3})$
3	1,5		$\frac{3\sqrt{5}}{25}$	495
4	204		16π	3π
4	204	$4\sqrt[3]{4}$	$\frac{16\pi}{3}$	$\frac{3\pi}{4}$
5	7	7	$\frac{\pi}{3}$	$\arccos \frac{1}{3}$
6	3	6	24	0,6625
7	$\frac{64\pi}{27}$	$12\sqrt{3}$	8	5:1
8	63	π	9π	72
9	$2\arccos\frac{3}{8}$	2,(6)	π	7,5
10	2π	52π	75	144

11 ВЕКТОРЫ

11.1 ОСНОВНЫЕ ПОНЯТИЯ И ФОРМУЛЫ

Прямоугольная декартова система координат

Расстояние между точками $A(x_A, y_A, z_A)$ и $B(x_B, y_B, z_B)$

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$$
.

Координаты середины отрезка AB:

$$x = \frac{x_A + x_B}{2}$$
, $y = \frac{y_A + y_B}{2}$, $z = \frac{z_A + z_B}{2}$.

Уравнение прямой с угловым коэффициентом k на плоскости:

$$y = kx + b$$
.

Уравнение окружности радиуса R с центром в точке (x_0, y_0) на плоскости

$$(x-x_0)^2 + (y-y_0)^2 = R^2$$
.

Векторы в прямоугольной декартовой системе координат

Координаты вектора $\overline{a}=AB=(a_x,a_y,a_z)$, заданного точками начала $A(x_A,y_A,z_A)$ и конца $B(x_B,y_B,z_B)$:

$$a_x = x_B - x_A$$
, $a_y = y_B - y_A$, $a_z = z_B - z_A$.

Модуль вектора:

$$|\overline{a}| = a = \sqrt{a_x^2 + a_y^2 + a_z^2}.$$

Линейные операции над векторами

Сложение векторов:

$$\overline{a} + \overline{b} = (a_x, a_y, a_z) + (b_x, b_y, b_z) = (a_x + b_x, a_y + b_y, a_z + b_z).$$

Умножение вектора на число:

$$\lambda \overline{a} = \lambda(a_x, a_y, a_z) = (\lambda a_x, \lambda a_y, \lambda a_z).$$

Единичный вектор \overline{a}_0 , сонаправленный с вектором \overline{a} (орт вектора \overline{a}):

$$\overline{a}_0 = \frac{1}{|\overline{a}|} \overline{a} .$$

Скалярное произведение векторов

Скалярное произведение векторов:

$$\overline{a}\cdot\overline{b}=|\overline{a}||\overline{b}|\cos\varphi,$$

где ϕ – угол между ненулевыми векторами $\overline{a},\overline{b}$.

Скалярное произведение векторов заданных своими координатами:

$$\overline{a} \cdot \overline{b} = (a_x, a_y, a_z) \cdot (b_x, b_y, b_z) = a_x \cdot b_x + a_y \cdot b_y + a_z \cdot b_z.$$

$$(\overline{a} \cdot \overline{a} = a_x^2 + a_y^2 + a_y^2 = |\overline{a}|^2 = a^2).$$

Косинус угла между векторами

$$\cos \varphi = \frac{\overline{a} \cdot \overline{b}}{|\overline{a}||\overline{b}|} = \frac{a_x b_x + a_y b_y + a_z b_z}{\sqrt{a_x^2 + a_y^2 + a_z^2} \sqrt{b_x^2 + b_y^2 + b_z^2}}.$$

Условие перпендикулярности и коллинеарности векторов

$$\overline{a}oldsymbol{ar{a}} \Leftrightarrow \overline{a}\cdot\overline{b} = 0$$
 или $a_xb_x + a_yb_y + a_zb_z = 0$.
$$\overline{a}\Big\|\overline{b} \Leftrightarrow \overline{a} = \lambda\overline{b}$$
 или $\frac{a_x}{b_x} = \frac{a_y}{b_y} = \frac{a_z}{b_z}$.

Проекция вектора на ось, сонаправленную с вектором:

$$\operatorname{np}_{\overline{b}}\overline{a} = \left| \overline{a} \right| \cos \varphi = \frac{\overline{a} \cdot \overline{b}}{\left| \overline{b} \right|}.$$

10.2 ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

1. Установите, при каких значениях m, длина вектора $\overline{a} = (m+2; -\sqrt{55}; m+5)$ не превышает 12.

Решение.

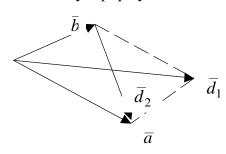
$$|\overline{a}| \le 12 \Leftrightarrow \sqrt{(m+2)^2 + 55 + (m+5)^2} \le 12 \Leftrightarrow$$

 $\Leftrightarrow 2m^2 + 14m + 84 \le 144 \Leftrightarrow$
 $\Leftrightarrow m^2 + 7m - 30 \le 0 \Rightarrow -10 \le m \le 3.$

Ответ: $m \in [-10; 3]$.

2. Найдите длину вектора $\overline{a}=3\overline{b}-2\overline{c}$, если $\overline{b}=(-1;4;3)$, $\overline{c}=(2;-1;7)$.

Решение.


$$\overline{a} = 3\overline{b} - 2\overline{c} = 3(-1; 4; 3) - 2(2; -1; 7) = (-3; 12; 9) + (-4; 2; -14) =$$

$$= (-7,14,-5) \Rightarrow |\overline{a}| = \sqrt{49 + 196 + 25} = \sqrt{270} = 3\sqrt{30}.$$
Ombern: $3\sqrt{30}$.

3. Найдите отношение длин диагоналей параллелограмма, построенного на векторах $\overline{a}=(3;5;-2)$ и $\overline{b}=(-2;3;-3)$.

Решение.

Используя формулы п.2, запишем:

$$\overline{d}_1 = \overline{a} + \overline{b} = (1; 8; -5)$$

$$\overline{d}_2 = \overline{a} - \overline{b} = (5; 2; 1)$$

Искомое отношение:

$$\frac{\left|\overline{d}_{1}\right|}{\left|\overline{d}_{2}\right|} = \frac{\sqrt{1+64+25}}{\sqrt{25+4+1}} = \frac{\sqrt{3}}{1}.$$

Ответ: $\sqrt{3}:1$.

4. Найдите длину медианы AD стороны BC треугольника ABC, если A(-1;-3;4), B(2;-4;-1), C(4;6;5).

Решение.

Координаты точки D – середины отрезка BC:

$$x_D = \frac{x_B + x_C}{2} = \frac{2+4}{2} = 3, \ y_D = \frac{y_B + y_C}{2} = \frac{-4+6}{2} = 1,$$

$$z_D = \frac{z_B + z_C}{2} = \frac{-1+5}{2} = 2.$$

$$\overline{AD} = (x_D - x_A, y_D - y_A, z_D - z_A) = (3+1; 1+3; 2-4) = (4,4,-2).$$

$$|\overline{AD}| = \sqrt{16+16+4} = \sqrt{36} = 6.$$

Ответ: 6.

5. Заданы три последовательные вершины параллелограмма A (2; -3; 1), B (4; 1; 2), C (6; 7; 1). Найдите координаты вершины D.

Решение.

Координаты точки O – середины диагонали AC параллелограмма:

$$x_O = \frac{x_A + x_C}{2} = \frac{2+6}{2} = 4$$
, $y_O = \frac{y_A + y_C}{2} = \frac{-3+7}{2} = 2$, $z_O = \frac{z_A + z_C}{2} = \frac{1+1}{2} = 1$.

По свойству диагоналей параллелограмма:

$$x_O = \frac{x_B + x_D}{2}, \ y_O = \frac{y_B + y_D}{2}, \ z_O = \frac{z_B + z_D}{2} \Rightarrow$$

 $\Rightarrow x_D = 2x_O - x_B = 4, \ y_B = 2y_O - y_B = 3, \ z_D = 2z_O - z_B = 0.$

Ответ: (4,3,0).

6. Найдите длину средней линии трапеции, заданной координатами вершин A (2; 0; -1), B (5; -1; 1), C (-2; 1; 3), D (-8; 3; -1).

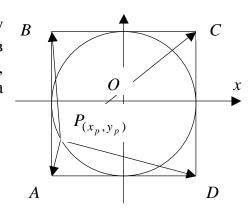
Решение.

$$\overline{AB} = (3; -1; 2), \ \overline{BC} = (-7; 2; 2), \ \overline{CD} = (-6; 2; -4), \ \overline{AD} = (-10; 3; 0).$$

 $\overline{CD}=-2\,\overline{AB}$, следовательно, $A\overline{B}\parallel C\overline{D}$ и эти векторы являются основаниями трапеции.

Длина средней линии

$$\frac{\left|\overline{AB}\right| + \left|\overline{CD}\right|}{2} = \frac{\sqrt{9 + 1 + 4} + \sqrt{36 + 4 + 16}}{2} = \frac{3}{2}\sqrt{14}.$$


Ombem:
$$\frac{3}{2}\sqrt{14}$$
.

7. Докажите, что сумма квадратов расстояний от произвольной точки окружности, вписанной в квадрат со стороной a, до его вершин, есть величина постоянная, и найдите эту величину.

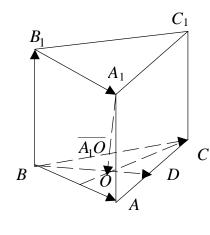
Решение.

Введем прямоугольную систему координат *Оху* с началом координат в центре окружности и осями, параллельными сторонам квадрата. Тогда вершины квадрата имеют координаты:

$$A\left(-\frac{a}{2}, -\frac{a}{2}\right) \quad B\left(-\frac{a}{2}, \frac{a}{2}\right) \quad C\left(\frac{a}{2}, \frac{a}{2}\right)$$
$$D\left(\frac{a}{2}, -\frac{a}{2}\right).$$

Введем векторы

$$\overline{PA} = \left(x_p + \frac{a}{2}; y_p + \frac{a}{2}\right) \overline{PB} = \left(x_p + \frac{a}{2}; y_p - \frac{a}{2}\right)
\overline{PC} = \left(x_p - \frac{a}{2}; y_p - \frac{a}{2}\right) \overline{PD} = \left(x_p - \frac{a}{2}; y_p + \frac{a}{2}\right)
PA^2 + PB^2 + PC^2 + PD^2 = \left|\overline{PA}\right|^2 + \left|\overline{PB}\right|^2 + \left|\overline{PC}\right|^2 + \left|\overline{PD}\right|^2 = \left(x_p + \frac{a}{2}\right)^2 + \left(y_p + \frac{a}{2}\right)^2 + \left(x_p + \frac{a}{2}\right)^2 + \left(y_p - \frac{a}{2}\right)^2 + \left(y_p - \frac{a}{2}\right)^2 + \left(y_p - \frac{a}{2}\right)^2 + \left(y_p - \frac{a}{2}\right)^2 + \left(y_p + \frac{a}{2}\right)^2 + \left(y_p + \frac{a}{2}\right)^2 = 4x_p^2 + a^2 + 4y_p^2 + a^2 = 4(x_p^2 + y_p^2)^2 + 2a^2.$$

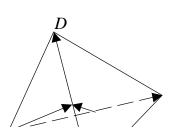

Координаты x_p, y_p точки P, лежащей на окружности, удовлетворяют

условию:
$$x_p^2 + y_p^2 = \left(\frac{a}{2}\right)^2$$
. Отсюда следует, что $PA^2 + PB^2 + PC^2 + PD^2 = 4\frac{a^2}{4} + 2a^2 = 3a^2$.

Ответ: $3a^2$.

8. В прямой треугольной призме $ABCA_1B_1C_1$ точка O есть точка пересечения медиан треугольника ABC. Найдите разложение вектора A_1O по векторам $\overline{BA} = \overline{a}$, $\overline{BB_1} = \overline{b}$, $\overline{BC} = \overline{c}$.

Решение.


По свойству медиан
$$\frac{BO}{OD} = \frac{2}{1} \Longrightarrow$$
 $\overline{BO} = \frac{2}{3}\overline{BD} = \frac{2}{3}(\overline{BA} + \frac{1}{2}\overline{AC}) =$ $C = \frac{2}{3}(\overline{a} + \frac{1}{2}(\overline{c} - \overline{a})) = \frac{1}{3}(\overline{c} + \overline{a}).$ Но $\overline{BO} = \overline{BB_1} + \overline{B_1A_1} + \overline{A_1O} = \overline{b} + \overline{a} + \overline{A_1O} \Longrightarrow$ $\Longrightarrow \overline{b} + \overline{a} + \overline{A_1O} = \frac{1}{3}\overline{c} + \frac{1}{3}\overline{a} \Longrightarrow$ $\Longrightarrow \overline{A_1O} = \frac{1}{3}(\overline{c} - 3\overline{b} - 2\overline{a}).$

Ответ:
$$\frac{1}{3}\overline{c} - \overline{b} - \frac{2}{3}\overline{a}$$
.

9. Тетраэдр задан координатами вершины A (5; 3; -1), B (-4; 1; 2), C (0; 7; -4), D (11; -2; 6). Найдите расстояние от середины ребра AB до середины ребра CD.

Решение.

Введем векторы, $\overline{AB} = (-9; -2; 3)$, $\overline{AC} = (-5; 4; -3)$, $\overline{CD} = (11; -9; 10)$, совпадающие со сторонами тетраэдра. Обозначим E, F – середины ребер AB и CD соответственно.

Тогда справедливо равенство:
$$\overline{AF} = \frac{1}{2}\overline{AB} + \overline{EF} = \overline{AC} + \frac{1}{2}\overline{CD}. \qquad A \qquad E$$

$$\overline{EF} = \overline{AC} + \frac{1}{2}\overline{CD} - \frac{1}{2}\overline{AB} = (-5; 4; -3) + \qquad C$$

$$+ \frac{1}{2}(11; -9; 10) - \frac{1}{2}(-9; -2; 3) = (5; \frac{1}{2}; \frac{1}{2}).$$

$$|\overline{EF}| = \sqrt{25 + \frac{1}{4} + \frac{1}{4}} = \sqrt{\frac{51}{2}}.$$

Ombem: $\sqrt{\frac{51}{2}}$.

10. Найдите скалярное произведение и косинус угла между векторами $\overline{c} = 3\overline{a} + \overline{b}$ и $\overline{d} = -\overline{a} + 2\overline{b}$, если $\overline{a} = (1; -2; 0)$, $\overline{b} = (-5; 2; 3)$.

Решение.

$$\overline{c} = 3\overline{a} + \overline{b} = 3(1; -2; 0) + (-5; 2; 3) = (3; -6; 0) + (-5; 2; 3) = (-2; -4; 3).$$

$$\overline{d} = -\overline{a} + 2\overline{b} = -(1; -2; 0) + 2(-5; 2; 3) = (-11; 6; 6).$$

$$\overline{c} \cdot \overline{d} = c_x d_x + c_y d_y + c_z d_z = -2(-11) - 4 \cdot 6 + 3 \cdot 6 = 16.$$

$$\cos \varphi = \frac{\overline{c} \cdot \overline{d}}{|\overline{c}||\overline{d}|} = \frac{16}{\sqrt{4 + 16 + 9}\sqrt{121 + 36 + 36}} = \frac{16}{\sqrt{29}\sqrt{193}} \approx 0,2139.$$

Ответ: 16; 0,2139.

11. Найдите вектор $\overline{a}=(a_x;a_y;-1)$, если известно, что он перпендикулярен векторам $\overline{b}~(-3;4;0)$ и $\overline{c}~(2;-1;3)$.

Решение.

Найдем скалярные произведения $\overline{a}\cdot\overline{b}=-3a_x+4a_y$, $\overline{a}\cdot\overline{c}=2a_x-a_y-3$. Из условия перпендикулярности векторов получим систему уравнений:

$$\begin{cases} -3a_x + 4a_y = 0 \\ 2a_x - a_y - 3 = 0 \end{cases} \Rightarrow \begin{cases} a_x = \frac{12}{5} \\ a_y = \frac{9}{5} \end{cases}.$$

Omsem:
$$\bar{a} = (2,4; 1,8; -1).$$

12. Найдите площадь треугольника, построенного на вектора \overline{a} и \overline{b} , если угол ϕ между ними равен 30° и $\overline{a}\cdot\overline{b}=4\sqrt{3}$.

Решение.

$$\overline{a} \cdot \overline{b} = |\overline{a}| |\overline{b}| \cos j \implies |\overline{a}| |\overline{b}| = \frac{\overline{a}\overline{b}}{\cos 30^{\circ}} = \frac{4\sqrt{3}}{\sqrt{3}/2} = 8.$$

$$S_{\Delta} = \frac{1}{2} |\overline{a}| |\overline{b}| \sin j = \frac{1}{2} \cdot 8 \cdot \sin 30^{\circ} = \frac{1}{2} \cdot 8 \cdot \frac{1}{2} = 2.$$

Ответ: 2.

13. Найдите площадь треугольника, заданного координатами вершин A (-2; -3; 1), B (5; 3; 7), C (-8; 6; 3).

Решение.

$$\overline{AB} = (7,6,6), \ \overline{AC} = (-6;9;2).$$

$$\cos \varphi = \frac{\overline{AB} \cdot \overline{AC}}{|\overline{AB}| \cdot |\overline{AC}|} = \frac{7 \cdot (-6) + 6 \cdot 9 + 6 \cdot 2}{\sqrt{49 + 36 + 36} \sqrt{36 + 81 + 4}} = \frac{24}{121}.$$

$$\sin \varphi = \sqrt{1 - \cos^2 \varphi} = \sqrt{1 - \frac{576}{14641}} = \frac{\sqrt{14065}}{121} \approx \frac{118,6}{121} \approx 0,98.$$

Угол ϕ равен углу BAC треугольника ABC.

$$S_{\Delta ABC} = \frac{1}{2} |\overline{AB}| |\overline{AC}| \sin \varphi \approx \frac{1}{2} \cdot 121 \cdot 0.98 \approx 59.3.$$

Ответ: 59,3.

14. Установите, при каких значениях α , векторы $\overline{a}=(2;1;3\alpha)$ и $\overline{b}=(\alpha^2;4;-3)$ перпендикулярны.

Решение.

 $\overline{a}\cdot\overline{b}=2\alpha^2+4-9\alpha$ и из условия перпендикулярности векторов получим:

$$2\alpha^2 - 9\alpha + 4 = 0$$
, откуда $\alpha_1 = \frac{1}{2}$, $\alpha_2 = 4$.

Omsem:
$$\left\{\frac{1}{2};4\right\}$$
.

15. Докажите теорему косинусов ($a^2 = b^2 + c^2 - 2bc \cos A$).

Решение.

Обозначим:
$$\overline{AB} = \overline{c}$$
, $\overline{CB} = \overline{a}$, $\overline{CA} = \overline{b}$.

Теперь $\overline{a} = \overline{b} + \overline{c}$. Умножим обе части полученного равенства скалярно на \overline{a} : $\overline{a} \cdot \overline{a} = (\overline{b} + \overline{c}) \cdot (\overline{b} + \overline{c}) \Leftrightarrow \overline{a}^2 = b^2 + c^2 + 2\overline{b} \cdot \overline{c} \Leftrightarrow \overline{a}^2 = b^2 + c^2 + 2|\overline{b}||\overline{c}||\cos(\pi - A) \Leftrightarrow \overline{a}^2 = b^2 + c^2 - 2bc\cos A$.

16. Найдите радиус R окружности, проведенный через точки A (-2,3,1), B (4,-1,0), C (3,1,4).

Решение.

$$\overline{AB} = (6, -4, -1); \overline{AC} = (5, -2, 3); \overline{BC} = (-1, 2, 4).$$

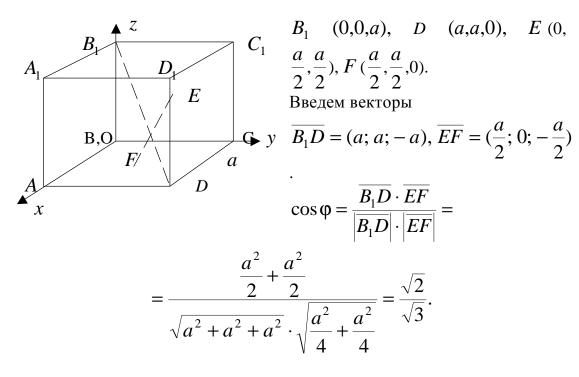
$$|\overline{AB}| = \sqrt{36 + 16 + 1} = \sqrt{53};$$

$$|\overline{AC}| = \sqrt{25 + 4 + 9} = \sqrt{38}; |\overline{BC}| = \sqrt{1 + 4 + 16} = \sqrt{21};$$

$$\cos \varphi = \frac{\overline{AB} \cdot \overline{AC}}{|\overline{AB}| \cdot |\overline{AC}|} = \frac{30 + 8 - 3}{\sqrt{53} \cdot \sqrt{38}} = \frac{35}{\sqrt{53} \cdot \sqrt{38}}.$$

$$\sin \varphi = \sqrt{1 - \cos^2 \varphi} = \sqrt{1 - \frac{35^2}{53 \cdot 38}} = \frac{\sqrt{789}}{\sqrt{53} \cdot \sqrt{38}}.$$

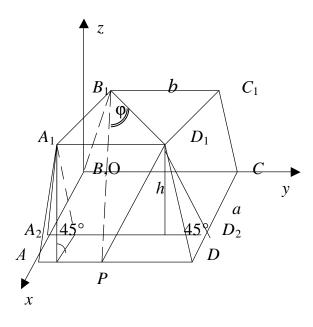
$$S_{\Delta ABC} = \frac{1}{2} |\overline{AB}| |\overline{AC}| \sin \varphi = \frac{1}{2} \frac{\sqrt{53} \cdot \sqrt{38} \cdot \sqrt{789}}{\sqrt{53} \cdot \sqrt{38}} = \frac{1}{2} \sqrt{789}.$$


$$R = \frac{|\overline{AB}| \cdot |\overline{AC}| \cdot |\overline{BC}|}{4S_{\Delta ABC}} = \frac{\sqrt{38} \cdot \sqrt{53} \cdot \sqrt{21}}{2\sqrt{789}} \approx \frac{1}{2} \sqrt{53,6} \approx 3,66.$$

Ответ: 3,66.

17. Найдите угол между диагональю B_1D куба $ABCDA_1B_1C_1D_1$ и прямой, соединяющей точки F и E – центры граней ABCD и BB_1C_1C .

Решение.


Обозначим a длину ребра куба и введем прямоугольную систему координат с центром O в точке B и осями, направленными по ребрам. Тогда точки B_1, D, E, F имеют координаты

Ombem: $\arccos \frac{\sqrt{6}}{3}$.

18. Грани правильной четырехугольной усеченной пирамиды $ABC\mathcal{I}A_1B_1C_1\mathcal{I}_1$ составляют угол 45° с плоскостью большего основания. Найдите площадь треугольника B_1D_1P , где P – середина ребра AD, если сторона большего основания равна a и высота пирамиды равна стороне меньшего основания.

Решение.

Введем прямоугольную декартову систему координат с центром в точке В и осями ох и оу, направленными по ребрам BA и BC. Сечение $A_2A_1D_1D_2$ призмы плоскостью параллельной плоскости Оуг есть равнобочная трапеция с нижним основанием а, с углом $\alpha = 45^{\circ}$ при нижнем основании и высотой h, равной верхнему b. основанию Отсюда $b = h = \frac{a}{3}$. Тогда координаты точек B_1 , D_1 , P равны $B_1(\frac{a}{3}, \frac{a}{3}, \frac{a}{3}), \quad D_1(\frac{2}{3}a, \frac{2}{3}a, \frac{a}{3}),$ $P(a,\frac{a}{2},0)$.

$$\begin{split} \overline{B_1D_1} &= (\frac{a}{3}; \frac{a}{3}; 0), \ \overline{B_1P} = (\frac{2a}{3}; \frac{a}{6}; -\frac{a}{3}). \\ |\overline{B_1D_1}| &= \sqrt{\frac{a^2}{9} + \frac{a^2}{9}} = \frac{a\sqrt{2}}{3}, \quad |\overline{B_1P}| = \sqrt{\frac{4a^2}{9} + \frac{a^2}{36} + \frac{a^2}{9}} = \frac{a\sqrt{21}}{6}. \\ \cos \varphi &= \frac{\overline{B_1D_1} \cdot \overline{B_1P}}{|\overline{B_1D_1}| \cdot |\overline{B_1P}|} = \frac{\frac{2a^2}{9} + \frac{a^2}{18}}{\frac{a\sqrt{2}}{3} \cdot \frac{a\sqrt{21}}{6}} = \frac{5a^2 \cdot 18}{18 \cdot a^2 \sqrt{42}} = \frac{5}{\sqrt{42}}. \\ \sin \varphi &= \sqrt{1 - \frac{25}{42}} = \sqrt{\frac{17}{42}}. \\ S_{\Delta B_1D_1P} &= \frac{1}{2} |\overline{B_1D_1}| |\overline{B_1P}| \sin \varphi = \frac{1}{2} \cdot \frac{a\sqrt{2}}{3} \cdot \frac{a\sqrt{21}}{6} \cdot \sqrt{\frac{17}{42}} = \frac{a^2 \sqrt{17}}{36}. \\ Omsem: \frac{a^2 \sqrt{17}}{36}. \end{split}$$

10.3 ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

1. Установите, при каких значениях параметра λ , длина вектора $\overline{a}=(\lambda-1;\,2\lambda;\,2)$ превышает длину вектора $\overline{b}=(-\lambda;\,1;\,3)$ не более чем в два раза.

Ответ: [-5,7].

2. Установите, при каких значениях m, длина вектора $\overline{a} = (m+1; \sqrt{3}; m)$, удовлетворяет неравенству $2 < |\overline{a}| < 4$.

Ombem: $m \in (-3,-1) \cup (0,2)$.

3. Найдите длину вектора \overline{a} , если $3\overline{a}-2\overline{b}=(-1;4;2), \overline{a}+5\overline{b}=(3;-5;1).$

Ответ: $\frac{7\sqrt{5}}{17}$.

- 4. Докажите, что точки A (3,–3,5), B (–1,–1,–1), C (1, –2,2) лежат на одной прямой.
- 5. Найдите длину медианы AD треугольника ABC, заданного координатами вершин A (-1,4,0), B (4,5,-1), C (8, -1,5).

Ответ: $\sqrt{57}$.

6. Найдите расстояние между серединами ребер AB и B_1C_1 треугольной призмы $ABCA_1B_1C_1$, если A (0,-3,3), B (4,7,3), C (-2,1,1), A_1 (5,3,7).

Ответ: $\sqrt{89}$.

7. Найдите длину биссектрисы угла A треугольника ABC, если A (1,–3,–1), B (1,1,2), C (3,–1,0).

Ombem: $\frac{\sqrt{195}}{4}$.

8. В треугольнике ABC стороны AB и BC разделены точками P и Q в отношении 3:2 и 3:5, считая от вершины B. Разложите вектор \overline{PQ} по векторам \overline{AB} и \overline{AC} .

Omsem: $\frac{9}{40}\overline{AB} + \frac{3}{8}\overline{AC}$.

9. В треугольнике ABC сторона BC в 1,5 раза больше стороны AB, AE и BF — медианы. Разложите вектор \overline{BD} — биссектрису угла В треугольника, по векторам \overline{AF} и \overline{BF} .

Omsem:
$$-\frac{2}{15}\overline{AE} + \frac{14}{15}\overline{BF}$$
.

10. В тетраэдре ABCD медиана DE грани BCD делится точкой M в отношении 3:5, считая от вершины D. Разложите вектор \overline{AM} по векторам \overline{AB} , \overline{AC} , \overline{AD} .

Ombem:
$$\frac{3}{16}\overline{AB} + \frac{3}{16}\overline{AC} + \frac{5}{8}\overline{AD}$$
.

- 11. Найдите скалярное произведение и угол между векторами \overline{a} и \overline{b} , если $\overline{a}=-\frac{1}{2}\overline{c}-\overline{d}$, $\overline{b}=\frac{3}{2}\overline{c}-5\overline{d}-3\overline{a}$, $\overline{c}=(0;-4;-2)$, $\overline{d}=(1;-2;-2)$. *Ответ:* 6; 45°
- 12. Найдите проекцию вектора $\bar{a}=(-5;4;7)$ на ось, сонаправленную с вектором $\bar{b}=(4;0;-3)$. *Ответ:* -8,2.
- 13. Установите, при каких значениях α и β вектор $\overline{a}=(-1;5;\alpha)$ перпендикулярен вектору $\overline{b}=(\beta;4;-2)$, если $|\overline{b}|=6$. Ответ: $\{(8,4);(12,-4)\}$.
- 14. Найдите вектор $\bar{d}=(\alpha, 2\alpha, -1)$, если известно, что вектор $2\bar{a}+\bar{d}$ перпендикулярен вектору $\bar{b}-\bar{d}$, $\bar{a}=(1;-3;2)$, $\bar{b}=(2;0;-4)$.

Omsem:
$$(\frac{6 \pm \sqrt{11}}{5}, \frac{12 \pm 2\sqrt{11}}{5}, -1)$$
.

- 15. Найдите площадь параллелограмма с последовательными вершинами A(0,-3,7), B(5,4,-1), C(-2,1,5). *Ответ:* 46.43.
- 16. Найдите вектор \bar{x} , перпендикулярный оси Ox, если скалярное произведение $\bar{x} \cdot \bar{a} = -18$, $\bar{x} \cdot \bar{b} = 38$, где $\bar{a} = (5; 4; -2)$, $\bar{b} = (-1; -3; 5)$. *Ответ*: (0,-1,7).
- 17. Найдите радиус окружности, описанной около треугольника ABC, заданного координатами вершин A (2,-1,4), B (3,-3,2), C (5,-2,1). *Ответ*: 2,26.

18. Основанием прямой призмы $ABCA_1B_1C_1$ высотой a, является правильный треугольник со стороной a. Найдите площадь сечения призмы плоскостью, проходящей через диагональ A_1B и середину ребра CC_1 .

Oтвет:
$$\frac{a^2\sqrt{6}}{4}$$
.

11.4 КОНТРОЛЬНЫЕ ЗАДАЧИ ПО ТЕМАМ

векторы	Вариант 1							
$N_{\underline{0}}$	Задание							
задания								
1	Найдите длину медианы стороны ВС треугольника							
	ABC, если $A(-2;-1;1)$, $B(2;5;4)$, $C(6;1;-2)$.							
2	$egin{array}{cccccccccccccccccccccccccccccccccccc$							
	вершины $A(-4;2;8)$, $AB(-3;5;1)$ и $BD(-2;4;-1)$.							
	Найдите сумму координат вершины C							
	параллелограмма.							
3	Установите, при каких т длина вектора							
	$\overline{a} = (m; -2m; 1)$ больше 9.							
4	Найдите проекцию вектора $\overline{a} = (-1; 4;2)$ на							
	направление вектора \overline{b} , если $\overline{b} = \overline{a} - 2\overline{c}$, $\overline{c} = (2; -1)$							
	2;0).							
5	Даны вектор $\overline{a} = (-1; 9; 2)$ и точка $A(4; 0; -3)$. Найдите							
	длину вектора \overline{AB} , перпендикулярного вектору \overline{a} ,							
	если известно, что точка B принадлежит оси OZ .							
6	Найдите площадь треугольника с вершинами в							
	точках $A(-2;-2)$, $B(-2;4)$ и $C(1;-1)$.							
7	$\left ext{ Найдите } \left \overline{a} + \overline{b} ight , ext{ если } \left \overline{a} ight = 12, \; \left \overline{b} ight = 14 \; и \; \left \overline{a} - \overline{b} ight = 1$							
	$2\sqrt{26}$.							
	·							
8	В кубе $ABCDA_1B_1C_1D_1$ найдите косинус угла между							
	векторами $DA_{_1}$ и DM , где M – середина ребра $CC_{_1}$.							
9	Найдите косинус угла между противолежащими							
	ребрами правильной треугольной пирамиды со							
	стороной основания 3 см и высотой 7 см.							
10	Запишите уравнение окружности, если точки $A(-2;1)$,							
	B(4;5) являются концами диаметра окружности.							

Векторы	Вариант 2					
$N_{\underline{0}}$	Задание					
задания						
1	Векторы $\overline{a} = (1; m; 2)$ и $\overline{b} = \left(\frac{n}{2} + 1, 3, 1\right)$					
	коллинеарны. Найдите модули векторов.					
2	Найдите длину биссектрисы угла A треугольника ABC , заданного координатами вершин $A(-1;-3;-1)$, $B(1;1;2)$, $C(3;-1;0)$.					
3	В трапеции АВСО с основаниями ВС и АО заданы					
	$\overline{AB} = (-7;4;5), \ \overline{AC} = (3;2;-1), \ \overline{AD} = (20;-4;-12).$					
	Найдите сумму координат вектора \overline{MN} , если M и $N-$ середины сторон AB и CD соответственно.					
4	Найдите косинус угла между векторами, $\overline{a}=3\overline{c}+\overline{d}$ и $\overline{b}=-\overline{c}+2\overline{d}$, если $\overline{c}=(1;-1;2),$ $\overline{d}=(-2;1;-1).$					
5	Даны вектор $\overline{a} = (4; -3)$ и точка $A(2; -9)$. Найдите					
	скалярное произведение $\overline{a} \cdot \overline{AB}$, если известно, что					
	точка B принадлежит оси OX , и векторы \overline{AB} и \overline{a} коллинеарны.					
6	Найдите площадь треугольника с вершинами в точках $A(-2;4)$, $B(4;4)$ и $C(2;1)$.					
7	Найдите \overline{b} , если $\left \overline{a}\right =6, \left \overline{a}+\overline{b}\right =11$ и $\left \overline{a}-\overline{b}\right =7.$					
8	Найдите косинус угла между большей диагональю и диагональю правильной шестиугольной призмы, исходящими из одной вершины, если длина стороны основания призмы равна 2 см, а высота призмы 5 см.					
9	Основанием правильной четырехугольной пирамиды высотой 3 см служит квадрат $ABCD$ со стороной 5 см. Найдите угол между векторами \overline{AE} и \overline{FG} , если E — вершина пирамиды, F — середина ребра BC .					
10	Заданы три последовательные вершины параллелограмма $A(2;1;0)$, $B(0;-2;4)$, $C(-4;2;5)$. Найдите координаты вершины D .					

Векторы	Вариант 3
No	Задание
задания	
1	Точки $A(4;-3;5)$, $B(2;6;7)$ и $D(13;-1;3)$ являются
	вершинами ромба АВСО. Найдите длину диагонали
	AC ромба.
2	В трапеции $ABCD$ с основаниями AC и CD точки M и
	N – середины сторон AD и BC соответственно, \overline{MN}
	$=$ (-6;2;-4) и \overline{CD} = (9;-3;6). Найдите сумму
	координат вектора AB .
3	Найдите все значения параметра m , при которых
	длина вектора $\overline{a} = (2m;10;3m)$ меньше длины
	вектора $\overline{b} = (-3;4m;4).$
4	Найдите скалярное произведение векторов \overline{a} и \overline{c} ,
	если $\overline{a}=(3;-1;2),\ \overline{b}=(1;2;-3),\ \overline{c}=\overline{a}-2\overline{b}$.
5	Даны вектор $\overline{a} = (1;-2;3)$ и точка $A(2;4;5)$. Найдите
	длину вектора \overline{AB} , перпендикулярного вектору \overline{a} ,
	если известно, что точка B принадлежит оси OX .
6	Найдите площадь треугольника с вершинами в
	точках $A(-2;-3)$, $B(2;1)$ и $C(6;1)$.
7	Найдите $\left \overline{b}\right - \left \overline{a}\right $, если $\left \overline{a} - \overline{b}\right = 20$, $\left \overline{a} + \overline{b}\right = 22$ и
	$\left \overline{b} \right = 19.$
8	В правильной треугольной призме $ABCA_1B_1C_1$ со
	стороной основания 3 см и высотой 5 см найдите
	косинус угла между вектором $\overline{AB_1}$ и \overline{CM} , где $M-$
	середина ребра B_1C_1 .
9	Основанием пирамиды АВСО служит
	прямоугольный треугольник ABC с прямым углом B .
	Грани ABD и BCD составляют угол 90° с плоскостью
	основания. Найдите косинус угла между векторами
	\overline{EF} и \overline{GH} , где точки E, F, G, H – середины ребер AD ,
	BC, DC и AC соответственно, если равны $AB = 3$ см,
	BC = 4 cm, AD = 7 cm.
10	Запишите уравнение окружности, проходящей через
	точки $A(-4;6)$, $B(3;5)$, $C(4;2)$.

Векторы	Вариант 4
№	Задание
задания	
1	Точки $A(2;3;-5)$, $C(3;6;8)$ и $D(5;4;-1)$ являются
	вершинами параллелограмма АВСО. Найдите длину
	диагонали BD параллелограмма.
2	Найдите длину средней линии трапеции,
	заданной координатами вершин $A(3;-1;-2)$, $B(-1;-2)$
	1;0;2), C(-3;2;3), D(-3;5;1).
3	Установите, при каких m длина вектора $\overline{a} = (-$
	m;8;-3) более чем в два раза превышает длину
	вектора $b = (-2;0;2m)$.
4	Найдите косинус угла между векторами $\overline{a} =$
	$(2;-3;1)$ и \overline{b} , если $\overline{b}=-\overline{a}+2\overline{c}$, $\overline{c}=(1;2;-1)$
	1).
5	Даны вектор $\overline{a} = (-1;5)$ и точка $A(4;2)$. Найдите
	длину вектора AB , если известно, что точка B
	принадлежит оси ОҮ, и скалярное произведение
	$\overline{a} \cdot \overline{AB}$ равно 4.
6	Найдите площадь треугольника с вершинами в
	точках $A(-2;5)$, $B(1;1)$ и $C(-2;-3)$.
7	Найдите $ \overline{a} - \overline{b} $, если $ \overline{a} = 13$, $ \overline{b} = 19$ и $ \overline{a} + \overline{b} = 22$.
8	В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$
	$AA_1 = 10$ см, $AD = 6$ см, $AB = 8$ см. Найдите косинус
	угла между векторами $\overline{DB_1}$ и $\overline{AD_1}$.
9	Найдите расстояние между серединами ребер АВ и
	CD пирамиды $ABCD$, заданной координатами вершин
	A(5;3;-1), B(-4;1;2), C(0;7;-4), D(11;-2;6).
10	Найдите сумму координат точки расположенной на
	оси OX и равноудаленной от точек $A(-1;4)$ и
	B(5;2).

Ответы Rektonki

Векторы Ответы					
№ варианта № задания	1	2	3	4	
1	$\sqrt{52}$	$\sqrt{41}$; $\frac{\sqrt{41}}{2}$	$\sqrt{170}$	$\sqrt{51}$	
2	5	$3\sqrt{2}$	2	6	
3	$(-\infty, -4) \cup \cup (4, +\infty)$	3	$(-\infty, -5) \cup \\ \cup (5, +\infty)$	$\left(-\frac{\sqrt{39}}{3}; \frac{\sqrt{39}}{3}\right)$	
4	$\frac{41\sqrt{93}}{93}$	$-\frac{11\sqrt{255}}{510}$	24	$\frac{12\sqrt{259}}{259}$	
5	$\sqrt{80}$	-75	$3\sqrt{10}$	4	
6	9	9 7	8	12	
7	$2\sqrt{157}$	7	10	$\sqrt{376}$	
8	$\frac{\sqrt{10}}{10}$	$\frac{\sqrt{41}}{41}$	$\frac{1}{2}\sqrt{\frac{109}{34}}$	$\frac{8\sqrt{17}}{85}$	
9	$\frac{3\sqrt{52}}{104}$	$\frac{5\sqrt{43}}{43}$	$\frac{31\sqrt{65}}{455}$	$\sqrt{\frac{51}{2}}$	
10	$(x-1)^{2} + + (y-3)^{2} = 13$	(-2; 5; 1)	$\left(x + \frac{13}{4}\right)^2 + \left(y - \frac{5}{4}\right)^2 =$	$\frac{11}{12}$	

КОНТРОЛЬНЫЕ ТЕСТЫ К РАЗДЕЛАМ 10, 11

TECT 1

No	
задания	Задание
1	Верно ли, что в кубе с ребром 1 см можно уместить отрезок длиной 1,7 см?
2	Верно ли, что в кубе найдется сечение, которое является правильным пятиугольником?
3	Верно ли, что в прямоугольном параллелепипеде с ребрами 1 см, 1 см, 2 см есть точки, равноудаленные от середин всех ребер?
4	Верно ли, что в любом прямоугольном параллелепипеде можно получить квадратное сечение?
5	Верно ли, что существует наклонный параллелепипед, одно из диагональных сечений которого является квадратом?
6	Верно ли, что в прямом параллелепипеде все диагональные сечения являются прямоугольниками?
7	Верно ли, что в правильной треугольной призме есть точка, равноудаленная от всех граней?
8	Верно ли, что в правильной треугольной призме диагональ боковой грани составляет равные углы с другими боковыми гранями?
9	Верно ли, что правильная четырехугольная призма, два ребра основания которой равны 1 см, является кубом, если ее диагональ равна $\sqrt{3}$ см?
10	Верно ли, что четырехугольная призма является правильной, если все ее диагонали равны?
11	Верно ли, что в любой правильной n -угольной призме существует n плоскостей симметрии?
12	Верно ли, что существует призма, у которой 15 вершин?
13	Верно ли, что треугольная пирамида является правильной, если каждая ее грань есть равнобедренный треугольник?
14	Верно ли, что в правильном тетраэдре с ребром 1 см угол между скрещивающимися ребрами больше 60°?
15	Верно ли, что если в тетраэдре $ABCD$ взаимно перпендикулярны ребро DB и грань ABC , то все его грани есть прямоугольные треугольники?
16	Верно ли, что в правильной четырехугольной пирамиде $PABCD$ с основанием $ABCD$, каждое ребро которой равно 2 см, расстояние от точки A до прямой PC больше 1 см?
17	Верно ли, что существует правильная четырехугольная пирамида, у которой точка, равноудаленная от всех вершин,

	лежит на основании пирамиды?
10	
18	Верно ли, что в любой правильной <i>п</i> -угольной пирамиде при
	n > 3 найдутся такие ее боковые грани, угол между которыми
10	является тупым?
19	Верно ли, что чем больше угол, под которым из вершины
	правильной пирамиды видно ребро основания, тем меньше ее
20	объем?
20	Верно ли, что существует пирамида, у которой граней больше
2.1	чем вершин?
21	Верно ли, что существует пирамида, в которой есть ребро
	основания, перпендикулярное двум ее граням?
22	Верно ли, что объем правильной треугольной пирамиды с
	боковыми ребрами равными 2 см и прямыми плоскими
	углами при вершине, меньше 1 см ³ ?
23	Верно ли, что существует сечение правильной треугольной
	призмы, представляющее собой равнобедренный
	прямоугольный треугольник?
24	Верно ли, что для каждого сечения шара можно найти
	перпендикулярное и равное ему сечение?
25	Верно ли, что в шаре радиуса 2 см, площадь сечения,
	удаленного от центра на 1 см, меньше 10 см ² ?
26	Верно ли, что радиус шара пропорционален кубическому
	корню из его объема?
27	Верно ли, что в любом цилиндре есть два равновеликих
	сечения, одно из которых параллельно его оси, а другое
	перпендикулярно ей?
28	Верно ли, что в цилиндре диаметр основания которого равен
	его образующей и равен 2 см, площадь осевого сечения
	больше 3 см ² ?
29	Верно ли, что отношение площади поверхности цилиндра к
	площади его боковой поверхности может быть любым
	числом большим 1?
30	Верно ли, что существуют два таких неодинаковых цилиндра,
	что равны отношения их объемов и площадей поверхностей?
31	Верно ли, что в каждом конусе есть равновеликие круговое и
	треугольное сечения?
32	Верно ли, что в конусе, диаметр основания которого равен
	образующей и равен 2 см, существует сечение, параллельное
	основанию, площадь которого равна 1 см ² ?
33	Верно ли, что существует конус, у которого площадь боковой
	поверхности равна площади основания?
34	Верно ли, что существует два неравных конуса, у которых
J-T	равны высоты, объемы и площади боковых поверхностей
	равны высоты, оовемы и площади ооковых поверхностей

	соответственно?					
35	Верно ли, что всегда существует куб, вершины которого					
	находятся на поверхности конуса?					
36	Верно ли, что центр сферы, описанной около тетраэдра,					
	находится в этом тетраэдре?					
37	Верно ли, что если диагонали параллелепипеда					
	$ABCDA_1B_1C_1D_1$ пересекаются в точке O , то					
	$\overline{OC} = \frac{1}{2}\overline{AB} + \frac{1}{2}\overline{AD} + \overline{AA_1}?$					
38	Верно ли, что если $ABCDA_1B_1C_1D_1$ есть куб с ребром 2, то					
	скалярное произведение векторов $\overline{a} = -2\overline{AB_1}$ и $\overline{b} = \overline{C_1D}$					
	больше 1?					
39	Верно ли, что не существует вектора, перпендикулярного					
	одновременно векторам $\overline{a}=(2,1,0),$ $\overline{b}=(2,0,1)$ и					
	$\overline{c} = (1,0,2)$?					
40	Верно ли, что из равенства проекций вектора \overline{a} на					
	направление вектора \overline{b} и вектора \overline{b} на направление вектора					
	\overline{a} , следует равенство векторов \overline{a} и \overline{b} ?					

TECT 2

	IEU I Z					
№ задания	Задание					
_	Danya wy waa a wafaay 1 ay maaraayya yayyay					
1	Верно ли, что в кубе с ребром 1 см расстояние между					
	скрещивающимися ребрами соседних граней больше 0,5 см?					
2	Верно ли, что в кубе с ребром 1 см найдется сечение площади					
	больше 2 см ² ?					
3	Верно ли, что в прямоугольном параллелепипеде с ребрами 1					
	см, 1 см, 2 см есть точки, равноудаленные от всех граней?					
4	Верно ли, что все диагонали равны только в таком					
	параллелепипеде, который является прямоугольным?					
5	Верно ли, что существует наклонный параллелепипед, две					
	грани которого являются прямоугольниками?					
6	Верно ли, что наклонный параллелепипед можно разделить					
	плоскостью на такие две части, из которых можно составить					
	прямой параллелепипед?					
7	Верно ли, что в правильной треугольной призме существует					
	сечение, являющееся пятиугольным?					
8	Верно ли, что в правильной треугольной призме угол между					
	скрещивающимися диагоналями боковых граней может быть					
	прямым?					
9	Верно ли, что правильная четырехугольная призма, два ребра					
	основания которой равны 1 см, является кубом, если ее объем					
	равен 2 см ³ ?					
10	Верно ли, что четырехугольная призма является правильной,					
	если все ее ребра равны?					
11	Верно ли, что в любой правильной n -угольной призме					
	существует точка, равноудаленная от всех ребер?					
12	Верно ли, что существует призма, у которой 20 ребер?					
13	Верно ли, что треугольная пирамида является правильной,					
	если ее противоположные ребра попарно перпендикулярны?					
14	Верно ли, что в правильном тетраэдре с ребром 1 см угол					
	между гранями больше 45°?					
15	Верно ли, что если в тетраэдре АВСО взаимно					
	перпендикулярны ребро DB и грань ABC , то $AD \perp BC$?					
16	Верно ли, что в правильной четырехугольной пирамиде					
	PABCD с основанием ABCD, каждое ребро которой равно 2					
	см, расстояние от прямой AD до плоскости PBC больше 2					
	см?					
17	Верно ли, что существует правильная четырехугольная					
	пирамида, в которой есть точка, равноудаленная от всех					
	ребер?					
18	Верно ли, что в любой правильной <i>п</i> -угольной пирамиде					
	The state of the s					

	имеются п плоскостей симметрии?
19	Верно ли, что чем больше угол, под которым из вершины
	правильной пирамиды видно ребро основания (при
	построенной высоте), тем больше ее площадь поверхности?
20	Верно ли, что существует пирамида, у которой самое
	короткое боковое ребро равно ее высоте?
21	
21	Верно ли, что существует пятиугольная пирамида, у которой
	есть сечение, являющееся шестиугольником?
22	Верно ли, что объем четырехугольной пирамиды с ребрами
	равными 2 см меньше 1 см ³ ?
23	Верно ли, что существует сечение правильной
	четырехугольной пирамиды, все ребра которой равны,
	представляющее собой равнобедренный прямоугольный
	треугольник?
24	Верно ли, что для каждой хорды шара можно найти
	перпендикулярную и равную ей хорду?
25	Верно ли, что в шаре радиуса 2 см, площадь сечения,
	составляющего с плоскостью большого круга угол 60°,
	больше 1 см ² ?
26	Верно ли, что радиус сферы пропорционален квадратному
	корню из ее площади?
27	Верно ли, что существует сечение цилиндра, являющееся
	трапецией?
28	Рариа ни ито в индинира ниомотр основания которого варон
20	Верно ли, что в цилиндре, диаметр основания которого равен его образующей и равен 2 см, наибольшая площадь сечения,
	являющегося эллипсом, больше 5 см ² ?
29	
29	Верно ли, что если диагональ осевого сечения цилиндра меньше 1 см, то площадь его поверхности меньше 5 см ² ?
	меньше тем, то площадь его поверхности меньше э см !
30	Верно ли, что зная две из трех величин: объем цилиндра,
	площадь его боковой поверхности и площадь его
	поверхности, можно найти третью?
31	Верно ли, что наибольшим по площади треугольным
	сечением конуса, является осевое сечение?
32	Верно ли, что в конусе, диаметр основания которого равен
	образующей и равен 2 см, площадь осевого сечения больше
	1.5 cm^2 ?
33	Верно ли, что если радиус основания конуса равен 1, то
	отношение площади поверхности конуса к его объему
	больше, чем π ?
34	Верно ли, что если два неравных усеченных конуса имеют
	соответственно равные большие и меньшие основания, то

	отношение площадей их боковых поверхностей равно							
	отношению их объемов?							
35	Верно ли, что всегда существует куб, вершины которого							
	находятся на поверхности цилиндра?							
36	1							
30	Верно ли, что существует тетраэдр, у которого радиус							
	описанной сферы равен каждому его ребру?							
37	Верно ли, что если диагонали параллелепипеда							
	$ABCDA_1B_1C_1D_1$ пересекаются в точке O , то							
	$\overline{AD} + \overline{D_1O} + \overline{OA} = \overline{CB} + \overline{B_1O} + \overline{OC}?$							
38	Верно ли, что если $ABCDA_1B_1C_1D_1$ есть куб с ребром 2, то							
	скалярное произведение векторов $\overline{a} = \overline{B_1 D}$ и							
	$\overline{b} = \overline{A_1}\overline{B_1} + \overline{C_1}\overline{B_1} + \overline{BD_1}$ больше 1?							
39	Верно ли, что не существует вектора, перпендикулярного							
	одновременно векторам $\overline{a} = (2,1,0), \overline{b} = (2,0,1)$ и							
	$\overline{c} = (2,0,1)$?							
40	Верно ли, что из равенства модулей проекций вектора \overline{a} на							
	направление вектора \overline{b} и вектора \overline{b} на направление вектора							
	\overline{a} , следует равенство модулей векторов \overline{a} и \overline{b} ?							

Ответы к тестам

	Tec	ет 1			Te	ст 2	
№ задания	ответ	№ задания	ответ	№ задания	ответ	№ задания	ответ
1	да	21	нет	1	да	21	нет
2	нет	22	нет	2	нет	22	да
3	нет	23	нет	3	нет	23	да
4	да	24	да	4	да	24	да
5	да	25	нет	5	да	25	нет
6	да	26	нет	6	нет	26	нет
7	нет	27	нет	7	да	27	да
8	нет	28	да	8	нет	28	нет
9	да	29	да	9	нет	29	да
10	да	30	да	10	нет	30	нет
11	нет	31	нет	11	нет	31	да
12	нет	32	да	12	нет	32	да
13	да	33	нет	13	да	33	нет
14	да	34	нет	14	да	34	нет
15	нет	35	да	15	нет	35	да
16	да	36	да	16	нет	36	нет
17	да	37	нет	17	да	37	да
18	да	38	да	18	да	38	да
19	да	39	да	19	нет	39	нет
20	нет	40	да	20	да	40	да

12 ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОГО АНАЛИЗА

12.1 ОСНОВНЫЕ ПОНЯТИЯ И ФОРМУЛЫ

ФУНКЦИИ

Свойства функций

1. Монотонность функций.

Функция f(x) называется возрастающей (убывающей) на данном промежутке, если при любых двух различных значениях аргумента из данного промежутка большему значению аргумента соответствует большее (меньшее) значение функции: $f(x_1) < f(x_2)$ при $x_1 < x_2$ — для возрастающей и $f(x_1) > f(x_2)$ при $x_1 < x_2$ — для убывающей.

Возрастающая или убывающая на некотором промежутке функция называется строго монотонной на этом промежутке.

2. Чётность и нечетность функций.

Функция f(x) называется **чётной**, если для любого значения аргумента из области определения функции выполняется равенство:

$$f(-x) = f(x),$$

и нечетной, если

$$f(-x) = -f(x)$$

3. Периодичность функций.

Функция f(x) называется **периодической**, если существует такое число T>0 (**период**), что для любого значения аргумента из области определения функции имеет место равенство $f(x\pm T)=f(x)$.

Некоторые элементарные функции

- 1. Линейная функция: $y = kx + b, k, b \in R$.
- 2. Квадратичная функция: $y = ax^2 + bx + c$.
- 3. Многочлен n-й степени: $y = a_0 x^n + a_1 x^{n-1} + \mathbf{L} + a_{n-1} x + a_n$.
- 4. Обратная пропорциональность: $y = \frac{a}{x}, \ a \neq 0$.
- 5. Дробно-линейная функция: $y = \frac{ax+b}{cx+d}$.
- 6. Степенная функция: $y = x^{\alpha} \ \alpha \in R$.

- 7. Показательная функция: $y = a^x \ a > 0$.
- 8. Логарифмическая функция: $y = \log_a x$, a > 0.
- 9. Тригонометрические функции:

$$y = \sin x$$
, $y = \cos x$, $y = \operatorname{tg} x$, $y = \operatorname{ctg} x$.

10. Обратные тригонометрические функции:

 $y = \arcsin x$, $y = \arccos x$, $y = \arctan x$, $y = \arctan x$.

Сложная функция

Совместное задание функций y = f(u) и $u = \varphi(x)$ таких, что область определения функции f содержит область значений функции ϕ , определяет функцию (композицию функций, сложную функцию функции $y = f(\varphi(x))$ аргумента x.

Переменная $u = \varphi(x)$ называется промежуточным аргументом сложной функции. Сложная функция может иметь несколько промежуточных аргументов.

ПРОИЗВОДНАЯ ФУНКЦИИ

Правила дифференцирования

 $(u, v - \phi y$ нкции, c = const)

1.
$$(c \cdot u)' = c \cdot u'$$

3.
$$(u \cdot v)' = u'v + uv'$$

1.
$$(c \cdot u)' = c \cdot u'$$

2. $(u+v)' = u'+v'$

$$4. \left(\frac{u}{v}\right) = \frac{u'v - uv'}{v^2}$$

Таблица производных

1.
$$(c)' = 0$$

2.
$$(x^{\alpha})' = \alpha x^{\alpha-1}, \ \alpha \in \mathbf{R}$$

3.
$$(a^x)' = a^x \ln a$$
, $(e^x)' = e^x$

4.
$$(\log_a x)' = \frac{1}{x \ln a}$$
, $(\ln x)' = \frac{1}{x}$

5.
$$(\sin x)' = \cos x; (\cos x)' = -\sin x; (tgx)' = \frac{1}{\cos^2 x}; (ctgx)' = -\frac{1}{\sin^2 x}$$

Дифференцирование сложной функции $y = f(\varphi(x))$ аргумента x

$$y' = f_{\varphi}'(\varphi) \cdot \varphi'(x)$$

Уравнение касательной к графику функции

Уравнение касательной к графику функции y = f(x) в точке (x_0, y_0) имеет вид:

$$y - y_0 = f'(x_0)(x - x_0)$$
.

Исследование функции с помощью производных

Теорема 1 (достаточное условие монотонности). Если для всех $x \in X$ справедливо неравенство f'(x) > 0 (< 0), то на этом промежутке функция f(x) возрастает (убывает).

Определение. Точка x = c называется точкой максимума (минимума) функции f(x), если существует окрестность $(c - \delta; c + \delta)$ этой точки, в которой справедливо f(x) < f(c) (f(x) > f(c)) для любого $x \ne c$ из этой окрестности.

Теорема 2 (необходимое условие экстремума). Если функция f(x) имеет экстремум в точке c, то f'(c) = 0 или f'(c) не существует.

Теорема 3 (достаточное условие экстремума). Если функция f(x) непрерывна в некоторой окрестности точки c и имеет в этой окрестности производную, то f(x) имеет в точке с максимум, если f'(x) > 0 при x < c и f'(x) < 0 при x > c; минимум, если f'(x) < 0 при x < c и f'(x) > 0 при x > c.

Теорема 4. Непрерывная функция достигает на замкнутом интервале своих наибольшего и наименьшего значений. Наибольшее и наименьшее значения достигаются либо в точках экстремумов, либо на границах интервала.

ПЕРВООБРАЗНАЯ ФУНКЦИЯ

Определение. Функция F(x) называется первообразной для f(x) на некотором промежутке, если на этом промежутке выполняется равенство F'(x) = f(x).

1. Свойства первообразной

$$F'(x) = f(x), \quad G'(x) = g(x)$$

1.
$$(F(x) + G(x))' = f(x) + g(x)$$
;

2.
$$(cF(x))' = cf(c)$$

3.
$$\left(\frac{1}{k}F(kx+b)\right)' = f(kx+b), \quad k \neq 0, \quad k,b \in \mathbf{R}.$$

Определение. Множество всех первообразных функции f(x) называется **неопределённым интегралом** и обозначается $\int f(x) dx$.

Если
$$F'(x) = f(x)$$
, то $\int f(x)dx = F(x) + C$.

2. Таблица интегралов

1.
$$\int x^{a} dx = \frac{x^{a+1}}{a+1} + C$$
, $\alpha^{-1} - 1$ 3. $\mathbf{\hat{o}} a^{x} dx = \frac{a^{x}}{\ln a} + C$
2. $\mathbf{\hat{o}} \frac{dx}{x} = \ln|x| + C$ 4. $\mathbf{\hat{o}} \cos x dx = \sin x + C$, $\mathbf{\hat{o}} \sin x dx = -\cos x + C$

3. Формула Ньютона-Лейбница

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

4. Площадь криволинейной трапеции

Площадь, S криволинейной трапеции, ограниченной прямыми $y=0, \quad x=a, \quad x=b, \quad (a < b)$ и графиком, неотрицательной на [a,b] функции y=f(x), определяется по формуле $S=\int\limits_a^b f(x)dx$.

12.2 ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

1. Вычислите f(f(2)), если $f(x) = \frac{x-1}{x+1}$.

Решение.

Вычислим сначала f(2): $f(2) = \frac{2-1}{2+1} = \frac{1}{3}$.

Тогда
$$f(f(2)) = f\left(\frac{1}{3}\right) = \frac{\frac{1}{3}-1}{\frac{1}{3}+1} = \frac{-2}{4} = -\frac{1}{2}.$$

 $Omвет: -\frac{1}{2}.$

2. Найдите f(g(x)), если $f(x) = \frac{x+1}{x}$, $g(x) = \frac{1}{x}$.

Решение.

$$f(g(x)) = \frac{\frac{1}{x} + 1}{\frac{1}{x}} = 1 + x.$$

Ответ: 1 + x.

3. Найдите область определения функции $y = \ln(5x - x^2) + \frac{\sqrt{3-x}}{x-1}$.

Решение.

Используя области определения элементарных функций, входящих в данную, получим систему:

$$\begin{cases} 5x - x^2 > 0 \\ 3 - x \ge 0 \\ x \ne 1 \end{cases} \Leftrightarrow \begin{cases} x(5 - x) > 0 \\ x \le 3 \\ x \ne 1 \end{cases} \Leftrightarrow \begin{cases} 0 < x < 5 \\ x \le 3 \\ x \ne 1 \end{cases} \Leftrightarrow \begin{cases} 0 < x \le 3 \end{cases}$$

Ответ: $(0;1) \cup (1;3]$.

4. Найдите область определения функции $f(x) = \log_5(x - 2\sqrt{x - 1})$. *Решение*.

Нахождение области определения данной функции сводится к решению системы неравенств:

$$\begin{cases} x - 2\sqrt{x - 1} > 0 \\ x - 1 \ge 0. \end{cases}$$

Решая которую, получим

$$\begin{cases} x - 2\sqrt{x - 1} > 0 \Leftrightarrow \begin{cases} x^2 > 4(x - 1) \Leftrightarrow \begin{cases} (x - 2)^2 > 0 \Leftrightarrow \begin{cases} x \neq 2 \\ x \ge 1 \end{cases} \end{cases}$$

Ответ: [1;2) \cup (2;+∞).

5. Найдите область определения функции $y = \log_5 \log_{0.5} \frac{3-x}{x+2}$.

Решение.

Нахождение области определения данной функции сводится к решению системы неравенств:

$$\begin{cases} \log_{0.5} \frac{3-x}{x+2} > 0 \\ \frac{3-x}{x+2} > 0 \\ x \neq -2 \end{cases} \Leftrightarrow \begin{cases} \frac{3-x}{x+2} < 1 \\ \frac{3-x}{x+2} > 0 \\ x \neq -2 \end{cases} \Leftrightarrow \begin{cases} \frac{3-x-x-2}{x+2} < 0 \\ \frac{3-x}{x+2} > 0 \\ x \neq -2 \end{cases} \Leftrightarrow \begin{cases} \frac{1-2x}{x+2} < 0 \\ \frac{3-x}{x+2} > 0 \\ x \neq -2 \end{cases}$$

Решая неравенства методом интервалов, получим

$$\begin{cases} -2 < x < 3 \\ x < -2 \\ x > 0,5 \end{cases} \Leftrightarrow 0,5 < x < 3.$$

Ответ: (0,5;3).

6. Найдите область значений функции $f(x) = 1 - 3\sin^2 2x$.

Решение.

Преобразуем функцию, используя формулы понижения степени тригонометрических функций:

$$f(x) = 1 - 3\sin^2 2x = 1 - \frac{3(1 - \cos 4x)}{2} = \frac{3}{2}\cos 4x - \frac{1}{2}.$$

Зная область значений функции $y = \cos 4x$, получим

$$-1 \le \cos 4x \le 1 \Rightarrow -\frac{3}{2} \le \frac{3}{2} \cos 4x \le \frac{3}{2} \Rightarrow -2 \le \frac{3}{2} \cos 4x - \frac{1}{2} \le 1.$$

Имеем $f(x) \in [-2;1]$.

Ответ: [-2;1].

7. Найдите область значений функции y = |x + 2| - |x|.

Решение.

Данная функция определена при всех действительных значениях x. Используя определение модуля, преобразуем функцию

- 1) при x < -2 y = -x 2 + x = -2.
- 2) $\text{при } -2 \le x < 0 \ y = x + 2 + x = 2x + 2.$
- 3) при $x \ge 0$ y = x + 2 x = 2.

Отсюда имеем для функции кусочно-аналитическое выражение:

$$y = \begin{cases} -2, & x < -2 \\ 2x + 2, & -2 \le x < 0 \\ 2, & x \ge 0. \end{cases}$$

Следовательно, область значений этой функции E(y) = [-2;2].

Решение можно проиллюстрировать графически (рис. 1):

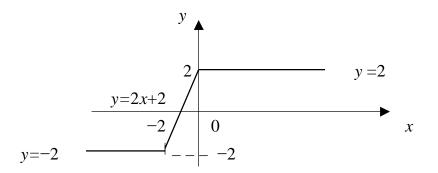
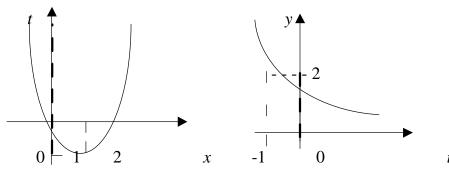


Рис. 1.

Ответ:[-2;2].

8. Найдите область значений функции $y = \left(\frac{1}{2}\right)^{x^2-2x}$.


Решение.

Сделаем замену переменной $t = x^2 - 2x$. Тогда функция *у* примет вид:

$$y = \left(\frac{1}{2}\right)^t$$
. Имеем систему:
$$\begin{cases} y = \left(\frac{1}{2}\right)^t \\ t = x^2 - 2x. \end{cases}$$

При $x \in (-\infty; +\infty)$ переменная t принимает значения $t \in [-1; +\infty)$, а переменная $y \in (0; 2]$. Следовательно, E(y) = (0; 2].

Рассуждения можно пояснить графически (рис. 2).

-1

Рис. 2.

Ответ: (0;2].

9. Определите, какая из данных функций является четной, какая нечетной, а какая – общего вида.

1)
$$f(x) = \ln \frac{1-x}{1+x}$$
, 2) $f(x) = \frac{2^{-x}}{2^{-2x}+1}$, 3) $f(x) = \sqrt{x^2+3x+5}$

Решение.

1) Рассмотрим функцию $f(x) = \ln \frac{1-x}{1+x}$.

Найдем ее область определения. По определению логарифма имеем:

$$\frac{1-x}{1+x} > 0$$
. Решая это неравенство методом интервалов, получим $x \in (-1;1)$.

Как видно область определения симметрична относительно начала координат. Найдем

$$f(-x) = \ln \frac{1+x}{1-x} = \ln \left(\frac{1-x}{1+x}\right)^{-1} = -\ln \frac{1-x}{1+x} = -f(x).$$

Следовательно, данная функция является нечетной.

2) Рассмотрим функцию
$$f(x) = \frac{2^{-x}}{2^{-2x} + 1}$$
.

Эта функция определена при всех действительных x. Преобразуем данную функцию, используя свойства степеней:

$$f(x) = \frac{2^{-x}}{2^{-2x} + 1} = \frac{\frac{1}{2^{x}}}{\frac{1}{2^{2x}} + 1} = \frac{2^{2x}}{2^{x}(1 + 2^{2x})} = \frac{2^{x}}{2^{2x} + 1} = f(-x).$$

Следовательно, эта функция является четной.

3) Теперь рассмотрим функцию $f(x) = \sqrt{x^2 + 3x + 5}$.

Эта функция определена при всех действительных x, т.к. дискриминант подкоренного выражения отрицательный.

$$f(-x) = \sqrt{(-x)^2 - 3x + 5} = \sqrt{x^2 - 3x + 5}.$$

Имеем, $f(-x) \neq f(x)$, $f(-x) \neq -f(x)$, следовательно, данная функция общего вида.

10. Постройте график функции $y = x^2 - 4|x| + 3$.

Решение.

Построим график функции $y = x^2 - 4x + 3$ (рис. 3). Заметим, что функция $y = x^2 - 4|x| + 3$ является четной. Оставим без изменения часть графика, лежащую в правой полуплоскости, и отразим её симметрично относительно оси Оу (рис. 4).

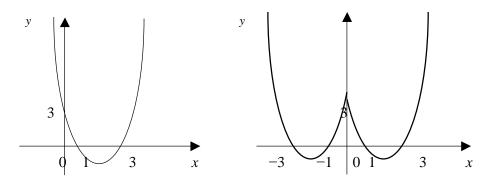
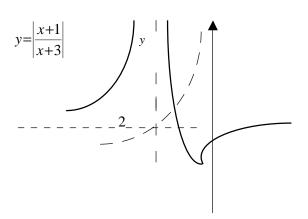


Рис. 3.

Рис. 4.

11. Постройте график функции
$$y = \left| \frac{x+1}{x+3} \right|$$
.

Решение.


Область определения данной функции: $D(y) = (-\infty; -3) \cup (-3; +\infty)$.

Сначала построим график дробно-рациональной функции $y = \frac{x+1}{x+3}$. Для этого преобразуем её к виду $y = \frac{x+3-2}{x+3} = 1 - \frac{2}{x+3}$.

Построим гиперболу $y = \frac{1}{x}$, растянем её в 2 раза вдоль оси Оу и отразим симметрично относительно оси Оу. Получим график функции $y = -\frac{2}{x}$.

График функции $y = 1 - \frac{2}{x+3}$ получается из графика функции $y = -\frac{2}{x}$ с помощью параллельного переноса вдоль оси Оx на 3 единицы влево и параллельного переноса вдоль оси Оy на 1 единицу вверх.

График функции $y = \left| \frac{x+1}{x+3} \right|$ получается путем отражения части графика, лежащей в нижней полуплоскости симметрично относительно оси Ox в верхнюю полуплоскость (рис. 5).

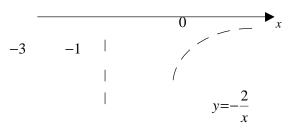


Рис. 5.

12. Совпадают ли графики функций $y = 2^{\log_2 x}$ и y = x? *Решение*.

Областью определения функции $y = 2^{\log_2 x}$ является интервал $(0;+\infty)$, а функция y = x определена при всех действительных x. Следовательно, графики этих функций не совпадают.

Ответ: нет.

13. Найдите производную функции $f(x) = \frac{5 - 2x^3}{\sqrt{x}}$.

Решение.

Воспользуемся правилом дифференцирования частного:

$$f'(x) = \frac{(5 - 2x^3)' \cdot \sqrt{x} - (5 - 2x^3) \cdot (\sqrt{x})'}{(\sqrt{x})^2} = \frac{-6x^2 \cdot \sqrt{x} - (5 - 2x^3) \cdot \frac{1}{2\sqrt{x}}}{x} = \frac{-12x^3 - 5 + 2x^3}{2x\sqrt{x}} = \frac{-5(2x^3 + 1)}{2x\sqrt{x}}.$$

Omeem: $\frac{-5(2x^3+1)}{2x\sqrt{x}}.$

14. Найдите значение производной функции $f(x) = 3x^2 \cdot \cos 2x - 5x + 1$ в точке $x_0 = \frac{p}{2}$.

Решение.

Используя правила дифференцирования, получим:

$$f'(x) = (3x^{2})' \cdot \cos 2x + 3x^{2} \cdot (\cos 2x)' - (5x)' + (1)' =$$

$$= 3 \cdot 2x \cdot \cos 2x + 3x^{2} \cdot (-\sin 2x \cdot 2) - 5 = 6x \cdot \cos 2x - 6x^{2} \cdot \sin 2x - 5.$$

$$f'(x_{0}) = f'(\frac{p}{2}) = 6 \cdot \frac{p}{2} \cdot \cos p - 6 \cdot \frac{p^{2}}{4} \cdot \sin p - 5 = -3p - 5.$$
Torда,

Ответ: -3p - 5.

15. Найдите значение производной функции $f(x) = \frac{\arctan \sqrt{x}}{\sqrt{x}} - e^{1-x}$ в точке $x_0 = 1$.

Решение.

Вычислим производную данной функции, используя правила дифференцирования частного и сложной функции:

$$f'(x) = \frac{(\arctan \sqrt{x})' \cdot \sqrt{x} - \arctan \sqrt{x} \cdot (\sqrt{x})'}{(\sqrt{x})^{2}} - (e^{1-x})' =$$

$$= \frac{\frac{1}{1 + (\sqrt{x})^{2}} \cdot \frac{1}{2\sqrt{x}} \cdot \sqrt{x} - \arctan \sqrt{x} \cdot \frac{1}{2\sqrt{x}}}{x} - e^{1-x} \cdot (-1) =$$

$$= \frac{\frac{1}{2(1+x)} - \arctan \sqrt{x} \cdot \frac{1}{2\sqrt{x}}}{x} + e^{1-x}.$$

Тогда,
$$f'(x_0) = f'(1) = \frac{1}{4} - \frac{p}{4} \cdot \frac{1}{2} + 1 = \frac{10 - p}{8}$$
.

Ответ: $\frac{10-p}{8}$.

16. Найдите значение производной функции $f(x) = \ln(x + \sqrt{1 + x^2})$ в точке $x_0 = 0$.

Решение.

Вычислим производную данной функции, использую правило дифференцирования сложной функции:

$$f'(x) = \frac{1}{x + \sqrt{1 + x^2}} \cdot \left(1 + \frac{2x}{2\sqrt{1 + x^2}}\right) = \frac{\sqrt{1 + x^2} + x}{(x + \sqrt{1 + x^2}) \cdot \sqrt{1 + x^2}} = \frac{1}{\sqrt{1 + x^2}}.$$

Тогда, $f'(x_0) = f'(0) = 1$.

Ответ: 1.

17. Напишите уравнение касательной к графику функции $y = 3 \ln x - 0.5x$ в точке с абсциссой x = 2.

Решение.

Вычислим производную данной функции $y' = \frac{3}{x} - 0.5$.

Найдем значение функции и ее производной в точке $x_0 = 2$.

$$f(2) = 3\ln 2 - 1$$
, $f'(2) = \frac{3}{2} - 0.5 = 1.5 - 0.5 = 1$.

Тогда уравнение касательной будет иметь вид: $y = (x-2) + 3\ln 2 - 1$ или $y = x + 3\ln 2 - 3$.

Ombem: $y = x + 3 \ln 2 - 3$.

18. Напишите уравнение касательной к графику функции $y = 3x^2 - 28x + 25$ в точке, где эта касательная параллельна прямой y = 2x - 1.

Решение.

Найдем производную данной функции y' = 6x - 28. По условию касательная параллельна прямой y = 2x - 1, следовательно, их угловые коэффициенты равны. Получим уравнение для нахождения $x_0: 6x_0 - 28 = 2$. Откуда $x_0 = 5$.

Теперь найдем значение функции в этой точке:

$$f(5) = 3 \cdot 25 - 28 \cdot 5 + 25 = -40.$$

Тогда уравнение касательной будет иметь вид:

$$y = 2(x-5) - 40$$
 или $y = 2x - 50$.

Omeem: y = 2x - 50.

19. Через точку (6;2) проходит две касательных к графику функции $f(x) = 3 + \frac{2}{x}$. Найдите сумму абсцисс точек касания.

Решение.

Вычислим производную функции $f'(x) = -\frac{2}{x^2}$.

Напишем уравнение касательной к графику данной функции в точке x_0 .

$$y = (3 + \frac{2}{x_0}) - \frac{2}{{x_0}^2}(x - x_0).$$

Подставив координаты точки (6;2) в это равенство, получим уравнение для нахождения абсцисс точек касания.

$$2 = (3 + \frac{2}{x_0}) - \frac{2}{x_0^2} (6 - x_0) \Rightarrow x_0^2 + 4x_0 - 12 = 0 \Rightarrow x_0 = \begin{bmatrix} -6 \\ 2 \end{bmatrix}$$

Откуда сумма абсцисс равна -4.

Ответ: -4.

20. Какой угол составляет с осью абсцисс касательная к графику функции $y = x \cdot \ln x$ в точке пересечения графика с этой осью?

Решение.

Область определения данной функции $D(y) = (0, +\infty)$.

Найдем точку пересечения графика функции с осью абсцисс. Для этого решим уравнение $x \cdot \ln x = 0$ на интервале $(0,+\infty)$. Получим x = 1.

Найдем производную функции и вычислим её значение в точке x = 1:

$$y' = 1 \cdot \ln x + x \cdot \frac{1}{x} = \ln x + 1; \quad y'(1) = 1.$$

Тангенс угла наклона касательной к оси абсцисс равен значению производной в точке касания. Следовательно, $tgj = 1 \Rightarrow j = \frac{p}{4}$.

Ответ:
$$\frac{p}{4}$$
.

21. Найдите координаты ближайшей к началу координат точки графика функции $y = \sin 2x$, где касательная имеет угловой коэффициент $k = \sqrt{3}$.

Решение.

Найдем производную данной функции: $y' = 2\cos 2x$.

Угловой коэффициент касательной равен значению производной в точке касания: $\sqrt{3} = 2\cos 2x$. Решая полученное тригонометрическое уравнение, получим, выбирая ближайшую к началу координат точку:

$$\cos 2x = \frac{\sqrt{3}}{2} \Rightarrow 2x = \frac{p}{6} \Rightarrow x = \frac{p}{12}; \quad y = \sin \frac{p}{6} = \frac{1}{2}.$$

Omsem:
$$\left(\frac{p}{12}; \frac{1}{2}\right)$$

22. К параболам $y = x^2 + 4x + 1$ и $y = x^2 + 2$ проведена общая касательная. Найдите сумму абсцисс точек касания.

Решение.

Пусть x_1 – абсцисса точки касания, тогда уравнение касательной к параболе $y = x_2 + 4x + 1$ в этой точке имеет вид: $y = (2x_1 + 4)(x - x_1) + x_1^2 + 4x_1 + 1$. После упрощений это уравнение запишется в виде: $y = 2(2 + x_1) \cdot x + 1 - x_1^2$.

Напишем уравнение касательной к параболе $y=x^2+2$ в точке с абсциссой $x_2:y=2x_2(x-x_2)+{x_2}^2+2$, или $y=2x_2\cdot x+2-{x_2}^2$.

Так как полученные уравнения являются уравнениями одной и той же прямой, то коэффициенты при неизвестном и свободные члены должны совпадать:

$$\begin{cases} 2 + x_1 = x_2 \\ 1 - x_1^2 = 2 - x_2^2 \end{cases} \Rightarrow \begin{cases} x_2 - x_1 = 2 \\ x_2^2 - x_1^2 = 1 \end{cases} \Rightarrow \begin{cases} x_2 - x_1 = 2 \\ (x_2 - x_1)(x_2 + x_1) = 1 \end{cases} \Rightarrow \\ \Rightarrow x_2 + x_1 = \frac{1}{2}.$$

Ombem: $\frac{1}{2}$.

23. Определите количество целых x на интервале возрастания функции $f(x) = -4x^3 - 11x^2 - 8x + 3$.

Решение.

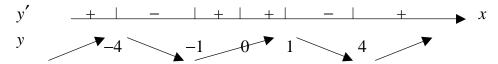
Найдем производную данной функции и приравняем ее нулю:

$$f'(x) = -12x^{2} - 22x - 8,$$

-12x² - 22x - 8 = 0 \iff 6x^{2} + 11x + 4 = 0 \iff x_{1} = -\frac{1}{2}, x_{2} = -\frac{4}{3}.

Нанесем нули производной на ось и определим знак производной в каждом из полученных интервалов.

$$\frac{y'}{y} - \frac{1}{2} \xrightarrow{x}$$


Итак, функция возрастает на интервале $(-\frac{4}{3}, -\frac{1}{2})$. В этом интервале содержится одно целое число x = -1.

Ответ: 1.

24. Найдите суммарную длину промежутков убывания функции, если ее производная имеет вид $f'(x) = x^2(x^2 - 1)(x^2 - 16)$.

Решение.

Найдем нули производной. Это, очевидно, x = 0, $x = \pm 1$, $x = \pm 4$. Нанесем их на ось и определим знак производной в каждом из полученных интервалов. Отметим, что корень x = 0 имеет кратность, равную двум, и, следовательно, производная не меняет знак при переходе через 0.

Напомним, что длина промежутка определяется как разность координат его правого и левого конца. Следовательно, оба промежутка убывания функции (-4,-1) и (1,4) имеют длину, равную трем, а их суммарная длина равна шести.

Ответ: 6.

25. Найдите точки максимума функции
$$f(x) = x + \frac{4}{x^2}$$
.

Решение.

Данная функция определена при x≠0.

Найдем производную функции и приравняем ее нулю:

$$f'(x) = 1 - \frac{8}{x^3}, \quad 1 - \frac{8}{x^3} = 0 \Leftrightarrow \frac{x^3 - 8}{x^3} = 0 \Rightarrow x = 2.$$

Производная, так же как и функция, не определена при x = 0.

Нанесем критические точки на ось и определим знак производной в каждом интервале:

Точка x = 0 не входит в область определения функции и, следовательно, не является точкой максимума функции.

Ответ: Функция не имеет точек максимума.

26. Найдите длины сторон прямоугольника с периметром 20 см, имеющего наименьшую диагональ.

Решение.

C Пусть дан прямоугольник ABCD.

Очевидно, что AB+BC = 10 см.

Обозначим
$$AB = x$$
. Тогда $BC = 10 - x$.

$$A$$
 D По теореме Пифагора получим:

$$AC = \sqrt{AB^2 + BC^2} = \sqrt{x^2 + (10 - x)^2} = \sqrt{2x^2 - 20x + 100}.$$

Исследуем на экстремум функцию $y = \sqrt{2x^2 - 20x + 100}$ при условии 0 < x < 10.

Найдем производную функции и приравняем её нулю:

$$y' = \frac{4x - 20}{2\sqrt{2x^2 - 20x + 100}} = \frac{2x - 10}{\sqrt{2x^2 - 20x + 100}};$$

$$y' = 0 \Leftrightarrow \frac{2x - 10}{\sqrt{2x^2 - 20x + 100}} = 0 \Rightarrow x = 5.$$

Определим знаки производной на каждом из полученных интервалов:

Следовательно, функция имеет минимум в точке x = 5. Единственный минимум непрерывной на некотором интервале функции является её наименьшим значением. Итак, длина диагонали AC будет наименьшей при x = 5.

Отсюда получаем AB = 5 см, BC = 10 - 5 = 5 см.

Ответ: 5 см, 5 см.

27. Представьте число 15 в виде двух слагаемых так, чтобы произведение квадрата первого из них на второе было наибольшим.

Решение.

Обозначим первое слагаемое x, тогда второе равно (15 - x).

Рассмотрим функцию $y = x^2(15 - x)$ и исследуем её на экстремум при условии 0 < x < 15. Найдем и приравняем нулю производную этой функции:

$$y' = 30x - 3x^2 \Rightarrow y' = 0 \Leftrightarrow 30x - 3x^2 = 0 \Rightarrow \begin{bmatrix} x = 0 \\ x = 10. \end{bmatrix}$$

Корень x = 0 не подходит по смыслу задачи. Определим знаки производной на полученных интервалах:

$$y' \qquad 0 \qquad + \qquad - \qquad 15 \qquad x$$

$$y \qquad 10 \qquad \qquad$$

На рассматриваемом интервале в точке x = 10 функция имеет единственный максимум, который и является её наибольшим значением.

Значит первое слагаемое равно 10, а второе 15 - 10 = 5.

Ответ: 10 и 5.

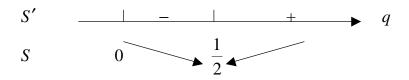
28. В геометрической прогрессии с положительными членами выполняется условие $b_1 = (b_1 + b_2) \cdot (3b_1 + 4b_2)$. При каком значении знаменателя прогрессии сумма первых четырех её членов принимает наименьшее значение? Найдите эту сумму.

Решение.

$$b_1 = (b_1 + b_2) \cdot (3b_1 + 4b_2) = (b_1 + b_1q) \cdot (3b_1 + 4b_1q).$$

Откуда $b_1 \cdot (1+q) \cdot (3+4q) = 1$, где q – знаменатель прогрессии, причем $b_1 > 0, q > 0$.

Сумма первых четырех членов геометрической прогрессии равна:


$$S_4 = \frac{b_1(1-q^4)}{1-q} = b_1 \cdot (1+q) \cdot (1+q^2) = \frac{1+q^2}{3+4q}.$$

Исследуем функцию $S(q) = \frac{1+q^2}{3+4q}$ на экстремум при условии q>0. Для этого найдем её производную и приравняем нулю:

$$S'(q) = \frac{2q \cdot (3+4q) - (1+q^2) \cdot 4}{(3+4q)^2} = \frac{4q^2 + 6q - 4}{(3+4q)^2},$$
$$\frac{4q^2 + 6q - 4}{(3+4q)^2} = 0 \Leftrightarrow 2q^2 + 3q - 2 = 0 \Rightarrow q = \begin{bmatrix} \frac{1}{2} \\ -1 \end{bmatrix}.$$

Корень q = -1 не удовлетворяет условию положительности знаменателя прогрессии.

Имеем:

Единственный минимум является и наименьшим значением функции при

$$q = \frac{1}{2}$$
. Причем $(S_4)_{\text{наим.}} = \frac{1 + \left(\frac{1}{2}\right)^2}{3 + 4 \cdot \frac{1}{2}} = \frac{1}{4}$.

Omeem: $\frac{1}{2}$; $\frac{1}{4}$.

29. Установите, при каких значениях параметра *т* функция

$$y = x^2 + 2(m-2)x + 12$$
 достигает минимума при $x = -3$.

Решение.

Найдем производную функции и приравняем её нулю:

$$y' = 2x + 2(m-2)$$
; $2x + 2(m-2) = 0 \Rightarrow x = 2 - m$.

Очевидно, что данная квадратичная функция достигает минимума в найденной точке. Следовательно, подставляя x = -3, получим: $-3 = 2 - m \Rightarrow m = -1$.

Ответ: −1.

30. Найдите наибольшее и наименьшее значение функции $f(x) = \frac{x}{8} + \frac{2}{x}$ на отрезке [1;6].

Решение.

Прежде всего, заметим, что на заданном интервале функция определена. Найдем ее производную и приравняем ее нулю.

$$f'(x) = \frac{1}{8} - \frac{2}{x^2}, \quad \frac{1}{8} - \frac{2}{x^2} = 0 \Leftrightarrow \frac{x^2 - 16}{8x^2} = 0 \Rightarrow x = \pm 4.$$

Точка x = -4 не принадлежит заданному отрезку [1;6].

Вычислим значения функции в точке x = 4 и на концах отрезка:

$$f(4) = \frac{4}{8} + \frac{2}{4} = 1$$
, $f(1) = \frac{1}{8} + \frac{2}{1} = \frac{17}{8}$, $f(6) = \frac{6}{8} + \frac{2}{6} = \frac{13}{12}$.

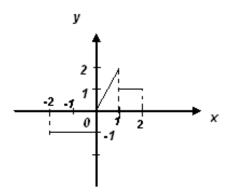
Следовательно, на отрезке [1;6] наибольшее значение функции достигается в точке x = 1 и равно $\frac{17}{8}$, а наименьшее – в точке x = 4 и равно 1.

Ответ: 2.

31. Найдите множество значений функции $y = x^2 - 7x + 6$ на отрезке [2;9]. *Решение*.

Найдем производную функции и приравняем её нулю:

$$y' = 2x - 7; \quad 2x - 7 = 0 \Rightarrow x = 3.5.$$


Точка x = 3,5 принадлежит заданному промежутку. Вычислим значение функции в точке x = 3,5 и на концах отрезка:

$$y(3,5) = -6,25;$$
 $y(2) = -4;$ $y(9) = 24.$

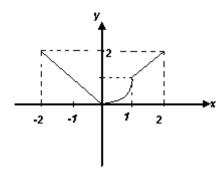
Следовательно, на отрезке [2;9] наименьшее значение функции достигается при x = 3,5 и равно -6,25, а наибольшее при x = 9 и равно 24. Следует заметить, что непрерывная на отрезке функция принимает все промежуточные значения между наименьшим и наибольшим значениями. Значит, множество значений функции на отрезке [2;9] равно E(y) = [-6,25;24].

Ответ: [-6,25; 24].

32. Постройте график непрерывной функции f(x) на отрезке [-2; 2], если f(0) = 0, а график ее производной f(x) на этом отрезке имеет вид:

Решение.

Запишем заданную графически производную f '(x) аналитическом виде,


$$f'(x) = \begin{cases} -1 & -2 \le x < 0 \\ 2x & 0 \le x < 1 \\ 1 & 1 \le x < 2 \end{cases}$$

Из определения первообразной следует, что:

 C_1, C_2, C_3 -произвольные постоянные.

$$f(x) = \begin{cases} -x + C_1 & -2 \le x < 0 & (-x)' = -1 \\ x^2 + C_2 & 0 \le x < 1 & (x^2)' = 2x \\ x + C_3 & 1 \le x < 2 & (x)' = 1 \end{cases}$$

Из условия f(0)=0 получаем, что $C_1=0$, и из условия непрерывности f(x)следует, что C_2 = 0 и C_3 = 0. Следовательно, график функции f(x) имеет вид:

33. Найдите первообразную функции $f(x) = x + 2^x$.

Решение.

Необходимо построить такую функцию F(x), производная которой равна $f(x)=x+2^{x}$. Известно, что производная функции x^{2} равна 2x.

Значит, производная функции
$$\left(\frac{x^2}{2}\right)' = \frac{2x}{2} = x$$
.

Значит, производная функции
$$\left(\frac{x^2}{2}\right)' = \frac{2x}{2} = x$$
.
Аналогично, производная функции $\left(\frac{2^x}{\ln 2}\right)' = \frac{2^x \ln 2}{\ln 2} = 2^x$.

Таким образом, первообразная F(x) искомой функции равна

$$F(x) = \frac{x^2}{2} + \frac{2^x}{\ln 2} + C,$$

где C-произвольная постоянная, которую по умолчанию можно не писать.

Omeem:
$$F(x) = \frac{x^2}{2} + \frac{2^x}{\ln 2}$$
.

34. Найдите первообразную F(x) функции $f(x) = 4x^3 + \cos 2x$, если известно, что $F(\pi) = 0$.

Решение.

Строим первообразную F(x) почленно,

$$(x^4)^7 = 4x^3; (\frac{1}{2}\sin 2x)^7 = (\frac{1}{2}\cos 2x)^2 = \cos 2x.$$

Следовательно, $F(x) = x^4 + \frac{1}{2}\sin 2x + C$.

Определим постоянную C из условия F(p) = 0:

$$p^4 + \frac{1}{2}\sin 2p + C = 0$$

Отсюда получим, что $C = -p^4$.

Таким образом, искомая первообразная F(x) построена.

Omeem:
$$F(x) = x^4 + \frac{1}{2}\sin 2x - p^4$$
.

35. Найдите первообразную функции $f(x) = e^{-x}$, проходящую через точку M(0;5).

Решение.

Определим первообразную функции f(x) в общем виде

$$F(x) = \int e^{-x} dx = -e^{-x} + C.$$

Проверим, что производная F'(x) равна f(x):

$$(-e^{-x}+C)^{/}=e^{-x}.$$

Из условия прохождения функции F(x) через точку M(0; 5) определим постоянную C по равенству:

$$5 = -e^{-x} + C,$$

следовательно, C=5.

Omeem:
$$F(x) = -e^{-x} + 5$$
.

36. Вычислите
$$\int_{0}^{2} \sqrt{1+4x} dx$$
.

Решение.

По формуле Ньютона-Лейбница

$$\int\limits_{0}^{2} \sqrt{1+4x} dx = F(2)-F(0)$$
, где $F(x)$ первообразная функции $f(x)=\sqrt{1+4x}$.

Определим F(x):

$$F(x) = \int (1+4x)^{1/2} dx = \frac{1}{4} \frac{(1+4x)^{1/2+1}}{1/2+1} = \frac{1}{6} (1+4x)^{3/2}.$$

Таким образом,

$$\int_{0}^{2} \sqrt{1+4x} \, dx = \frac{1}{4} \frac{\left(1+4x\right)^{\frac{1}{2}+1}}{\frac{1}{2}+1} = \frac{1}{6} \left(1+4x\right)^{3/2}.$$

Omsem:
$$\frac{1}{6}(1+4x)^{3/2}$$
.

37.Вычислите площадь фигуры, ограниченной линиями $y = \cos x$, y = 0, x = 0.

Решение.

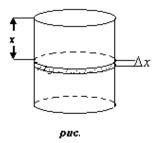
Совместно решая уравнения $y = \cos x$, y = 0, получим абсциссу точек пересечения данных линий: $x = \frac{p}{2}$. Искомая площадь S определяется по

формуле:
$$S = \int_{0}^{p/2} \cos x dx = \sin \frac{p}{2} - \sin 0 = 1.$$

Ответ: 1.

38.Определите работу, необходимую для выкачивания жидкости из цилиндрической бочки, высотой H= 2м и радиусом основания R= 0,5м. Удельный вес жидкости δ = 0,9.

Решение.


Работа затраченная на выкачивание тонкого слоя жидкости толщины Δx , находящегося на глубине x от поверхности (см. рис.) равна

$$\Delta Q = x dp R^2 \Delta x,$$

где $pR^2\Delta x$ – объем слоя жидкости,

 $dpR^2\Delta x$ – вес слоя жидкости толщины Δx ,

x — перемещение этого слоя до поверхности. Величина x изменяется от 0 до H.

Вся работа Q как функции переменной х определяется с помощью определенного интеграла.

$$Q = \int_{0}^{H} dp R^2 x dx.$$

Следовательно, $Q = dpR^2 \frac{x^2}{2}$.

По формуле Ньютона-Лейбница получим

$$Q = \frac{dpR^2}{2}H^2 = \frac{0.9 \cdot 3.14 \cdot 0.25}{2} \cdot 2^2 \approx 1.413 \text{ кг} \cdot \text{м}$$

Ответ: 1,413.

12.3 ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

Найдите область определения функции

1.
$$f(x) = \frac{1}{\sqrt{x-3}} + \sqrt{25-x^2}$$
. Omsem: (3;5].

2.
$$f(x) = \sqrt{4 - \log_2(x+1)}$$
. *Omeem*: (-1;15].

3.
$$f(x) = \lg \frac{12 - x - x^2}{x + 2} + \sqrt{1 - x}$$
. *Omeem*: $(-\infty; -4) \cup (-2; 1]$.

4.
$$f(x) = \log_{0.4} \log_4 \frac{5-x}{x-2}$$
. Omsem: (2;3,5).

5.
$$f(x) = \log_2(2^x - 4 - 5 \cdot 2^{-x})$$
. *Omeem*: $(\log_2 5; +\infty)$.

Найдите область значений функции:

6.
$$y = -x^2 + x - 1$$
: a) на области определения; б) на отрезке $[-1;1]$

Omeem:
$$a$$
) $(-\infty; -\frac{3}{4}]; \quad 6$) $[-3; -\frac{3}{4}].$

7.
$$y = |x + 2| - |x - 5|$$
. *Omeem*: [-7;7].

8.
$$y = 2 - \cos^2 x$$
. *Omeem*: [1;2].

9.
$$y = \sin x + \cos x$$
. *Ombem*: $[-\sqrt{2}, \sqrt{2}]$.

10.
$$y = 4^x - 2^x + 2$$
. *Omsem*: $[\frac{7}{4}; +\infty)$.

Определить, какими являются данные функции: четными, нечетными или общего вида.

11.
$$f(x) = \frac{x^3 - x}{x^2 - 1}$$
. Ответ: Нечетная.

12.
$$f(x) = 3^{x^2} - 3^{-x^2}$$
. Ответ: Четная.

13.
$$f(x) = \frac{\sqrt[3]{x^2 - 5x^3}}{x^2 + 2}$$
. Ответ: Общего вида.

14.
$$f(x) = \lg(x + \sqrt{1 + x^2})$$
. *Ответ*: Нечетная.

Постройте графики функций:

15.
$$y = x^2 - 3x + 2$$
, $y = x^2 - 3|x| + 2$, $y = |x^2 - 3x + 2|$

16.
$$y = x^2 + |x|$$

17.
$$y = |3x - 1| + |3 - x|$$

18.
$$y = |x(|x| - 2)|$$

19.
$$y = 2^{\log_2 \sin \frac{x}{2}}$$

Найдите производную функции и вычислить её значение в точке x_0 :

20.
$$f(x) = 3x^3 \cdot \ln 2x - 5\sqrt{x} + 7$$
, $x_0 = 1$. Omsem: $9 \ln 2 + 0.5$.

21.
$$f(x) = 2\sin^3 x - \frac{3}{x} + 4$$
, $x_0 = \frac{p}{4}$. Omsem: $\frac{3\sqrt{2}}{2} + \frac{48}{p^2}$.

22.
$$f(x) = \frac{\cos 3x}{\sqrt{3x}} - 4$$
, $x_0 = \frac{p}{3}$. Omsem: $\frac{3}{2p\sqrt{p}}$.

23.
$$f(x) = x \cdot \arcsin \frac{1}{x}$$
, $x_0 = \sqrt{2}$. *Ombem*: $\frac{p}{4} - 1$.

24.
$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$
, $x_0 = 1$. Omsem: $\frac{4e^2}{(e^2 + 1)^2}$.

Определите промежутки убывания и возрастания функции:

25.
$$f(x) = 16x^3 - 24x^2 + 9x - 1$$
.

Ответ: Функция возрастает на $\left(-\infty;\frac{1}{4}\right)$ и $\left(\frac{3}{4};+\infty\right)$, убывает на $\left(\frac{1}{4};\frac{3}{4}\right)$

$$26. f(x) = \frac{5}{3}x + \frac{15}{x - 5}.$$

Ответ: Функция возрастает на (-∞;2) и (8;+∞); убывает на (2;5) и (5;8).

27.
$$y = x(x-1)(x-2)$$
.

Ответ: Функция возрастает на $\left(-\infty; \frac{3-\sqrt{3}}{3}\right)$ и $\left(\frac{3+\sqrt{3}}{3}; +\infty\right)$, убывает на

$$\left(\frac{3-\sqrt{3}}{3};\frac{3+\sqrt{3}}{3}\right)$$

Определите промежутки убывания и возрастания функции, если её производная имеет вид:

28.
$$f'(x) = (x^2 - 1)(x^2 - 9)(x^2 - 16)$$
.

Ответ: Функция возрастает на промежутках: $(-\infty;-4),(-3;-1),(1;3),(4;+∞)$ и убывает на промежутках: (-4;-3),(-1;1),(3;4).

29.
$$f'(x) = (x-1)^2(x^4-4)$$
.

Ответ: Функция возрастает на $(-\infty; -\sqrt{2})$ и $(\sqrt{2}; +\infty)$; убывает на $(-\sqrt{2}; \sqrt{2})$.

Определите экстремумы функции:

30.
$$y = -x^3 + 9x^2 - 24$$
. Omsem: $y_{min} = y(0) = -24$; $y_{max} = y(6) = 84$.

31.
$$y = (x-1)^2(x-2)^2$$
. *Ombem*: $y_{min} = y(1) = y(2) = 0$;

$$y_{\text{max}} = y \left(\frac{3}{2}\right) = \frac{1}{16}.$$

Определите количество экстремумов функции, если её производная имеет вид:

32.
$$f'(x) = (x-3)^2(x^2-1)(x^2-9)$$
. Ombem: 4.

33.
$$f'(x) = 8x^4 - 2x^2$$
. *Omeem*: 2.

34. Напишите уравнение касательной к графику функции $y = -16\sqrt{x-5}$ в точке $x_0 = 9$.

Ombem: y = -4x + 4.

35. Напишите уравнение касательной к графику функции $y = 3x^2 - 27x + 30$ в точке, где касательная параллельна прямой y = -3x - 1.

Omeem:
$$y = -3x - 18$$
.

36. Через точку (-3;2) проходят две касательные к графику функции $f(x) = -3 + \frac{1}{x}$. Найдите сумму абсцисс точек касания.

Ответ: 0,4.

- 37. К параболам $y = x^2 + 2x + 5$ и $y = x^2$ проведена общая касательная. Найдите сумму абсцисс точек касания. *Ответ*: -5.
- 38. Найдите сумму угловых коэффициентов касательных к кривой y = (x+1)(x-1)(x-3) в точках её пересечения с осью абсцисс.

Ответ: 12.

Найдите наибольшее и наименьшее значение функции на отрезке.

39.
$$f(x) = 18x^2 + 8x^3 - 3x^4$$
, [0;4]. Omeem: $f_{\text{наим}} = 0$, $f_{\text{наиб}} = 135$.

40.
$$f(x) = 2x^3 + 9x^2 + 12x - 3$$
, [-2;2].

Omeem: $f_{\mu a \mu m} = -8$, $f_{\mu a \mu \bar{n}} = 73$.

41. Найдите сумму наибольшего и наименьшего значения функции

$$f(x) = 2^{3x+1} - 9 \cdot 2^{2x} + 12 \cdot 2^x$$
 на отрезке [1;2].

Ответ: 36.

Решите задачи

42. Периметр окна прямоугольной формы равен 6 см. Какими должны быть размеры окна, чтобы его площадь была наибольшей?

Ответ: $1,5 \times 1,5$ м.

43. Диагональ боковой грани правильной четырехугольной призмы равна d. Найдите длину бокового ребра, при котором объем призмы наибольший.

Ответ:
$$\frac{d\sqrt{3}}{3}$$
.

44. Представьте число 12 в виде суммы двух положительных слагаемых так, чтобы сумма куба первого слагаемого и утроенного второго слагаемого была наименьшей.

Ответ: 1;11.

45. Для геометрической прогрессии с положительными членами выполняется условие $b_1 - b_3 = b_1^2 + b_2^2$. При каком значении знаменателя геометрической прогрессии сумма первых четырех её членов принимает наибольшее значение? Найдите эту сумму.

Omeem:
$$\frac{1}{3}$$
; $\frac{32}{27}$.

46. Найдите первообразную функции f(x)

1)
$$f(x) = e^{2x} + x^2$$
;

2)
$$f(x) = \frac{3}{x} - \cos 4x$$
;

3)
$$f(x) = 2x + 3^x$$
;

4)
$$f(x) = \frac{1}{\sqrt{1+3x}}$$
;

5)
$$f(x) = \sin 5x + 4$$
.

Ответы:

1)
$$\frac{1}{2}e^{2x} + \frac{x^3}{3}$$
; 2) $3\ln|x| - \frac{1}{4}\sin 4x$; 3) $x^2 + \frac{3^x}{\ln 3}$; 4) $\frac{2\sqrt{1+3x}}{3}$; 5) $-\frac{1}{5}\cos 5x + 4x$.

47. Найдите первообразную функции $f(x) = \cos \frac{x}{2}$, переходящую через точку $M(\pi, 1)$.

Omsem:
$$F(x) = 2\sin\frac{x}{2} - 1$$

48. Вычислите
$$\int_{0}^{1} x^{2} dx$$

Oтвет:
$$\frac{1}{3}$$

49. Вычислите
$$\int_{1}^{e} \frac{4}{x} dx$$

Ответ: 4.

50.Вычислите площадь фигуры, ограниченной линиями $y = x^2$, y = 2x.

Ответ:
$$\frac{4}{3}$$
.

51. Вычислите площадь фигуры, ограниченной линиями

$$y = x$$
, $y = \frac{1}{x}$, $x = 1$, $x = e$.

Oтвет:
$$\frac{e^2-3}{2}$$
.

12.4 КОНТРОЛЬНЫЕ ЗАДАЧИ ПО ТЕМАМ

Функции Вариант 1

Фуг	акции Бариант 1		
№ задания	Задание		
1	Укажите номера верных неравенств, если график квадратичной функции $y = ax^2 + bx + c$, $D = b^2 - 4ac$ имеет вид:		
	1) $ab < 0$, 2) $cD > 0$, 3) $bD > 0$, 4) $bc > 0$, 5) $aD > 0$.		
2	Найдите $n, n \in \mathbb{Z}$, если известно, что произведение координат точки пересечения графиков функции $y = \log_2(x+1)$ и $y = 1-x^3$ принадлежат интервалу $(n, n+1)$.		
3	Установите область определения функции 1) $y = \frac{1}{x^3 - x}$, 2) $y = \sqrt{3^{2x+1} - 1}$.		
4	Установите область определения функции 1) $y = \log_2(x^2 - 4)$, 2) $y = \sqrt{\frac{x}{x^2 + x - 1}}$.		
5	Установите множество значений функции 1) $y = 3 - \cos 2x$, 2) $y = \log_3 \left(1 - \frac{3x}{x+5}\right)$.		
6	Установите множество значений функции, заданной на отрезке $y = \sin 2x, \ x \in [\arctan \frac{1}{3}, \arctan 2].$		
7	Укажите номера периодических функций 1) $y = \lg(8 - \cos x)$, 2) $y = 3^{\cos 2x}$, 3) $y = x \lg x$, 4) $y = \sqrt{1 + \sin x}$.		
8	Укажите номера четных функций 1) $y = \frac{x}{x + 3\sin x}$, 2) $y = 2x^3 \operatorname{tg} 5x$, 3) $y = 5x^2 - 2x$, 4) $y = x^2 e^{x+1}$.		
9	Укажите номера нечетных функций 1) $y = x^2 \sin 2x$, 2) $y = 2 \tan x \cos 2x$, 3) $y = \sqrt{\sin x}$ 4) $y = \sqrt{x^2 + 1} \cdot \lg 3 \cos x$.		
10	1) $y = x^2 \sin 2x$, 2) $y = 2 \operatorname{tg} x \cdot \operatorname{ctg} 2x$, 3) $y = \sqrt{\sin} x$ 4) $y = \sqrt{x^2 + 1} \cdot \lg 3^{\sin x}$. Найдите $f(x)$ и вычислите $f(5)$, если $\varphi(x) = \frac{1}{2x - 3}$, $f(\varphi(x)) = x$.		

Функции

	кции вариант 2		
№ задания	Задание		
1	Укажите номера верных неравенств, если график квадратичной функции $y = ax^2 + bx + c$, $D = b^2 - 4ac$ имеет вид: 1) $ab < 0$, 2) $aD < 0$, 3) $bc < 0$, 4) $bD < 0$, 5) $cD > 0$.		
2	Найдите $n, n \in \mathbb{Z}$, если известно, что произведение координат точек пересечения графиков функции $y = 2^x$ и $y = 3 - x $ принадлежат интервалу $(n, n+1)$.		
3	Установите область определения функции 1) $y = \frac{x-3}{x^2+x}$, 2) $y = \sqrt{4^{x-1}-1}$.		
4	Установите область определения функции 1) $y = \lg(5x - x^2)$, 2) $y = \sqrt{1 + \frac{x - 1}{x + 5}}$.		
5	Установите множество значений функции 1) $y = 2^{1-\cos 3x}$, 2) $y = \sqrt{\frac{x^2 - x - 2}{x}}$.		
6	Установите множество значений функции, заданной на отрезке $y = x2^{-x}$, $x \in [-1, \log_2 7]$.		
7	Укажите номера периодических функций 1) $y = \sqrt{1 + \cos^2 x}$, 2) $y = \sin(3^x)$, 3) $y = \log_2(3 - \cos x)$, 4) $y = x^2 \sin x$.		
8	Укажите номера четных функций 1) $y = \frac{x^2 + 4}{\lg x}$, 2) $y = (x^6 + 1)\sin 4x$, 3) $y = \frac{2^x - 2^{-x}}{x^3 + 3x}$ 4) $y = x^2 \lg 3x + 6 $.		
9	Укажите номера нечетных функций 1) $y = (x^3 + x)\cos 2x$, 2) $y = x^3 2^{3x}$, 3) $y = x^2 \operatorname{tg} 5x$ 4) $y = x \operatorname{lg} (1 - x^2)$.		
10	Найдите $f(j(x))$ и вычислите $f(j(x_0))$, если $\phi(x) = \frac{1}{x-1}$, $f(x) = 2x+1, \ x_0 = 2$.		

Функции

	кции		
№ задания	Задание		
1	Укажите номера верных неравенств, если график квадратичной функции $y = ax^2 + bx + c$, $D = b^2 - 4ac$ имеет вид: 1) $ab > 0$, 2) $ac < 0$, 3) $bD > 0$, 4) $aD > 0$, 5) $bc > 0$.		
2	Установите число точек пересечения графиков функций $y = \cos x$ и $y = \log_8 \left(x - \frac{\pi}{2} \right)$.		
3	Установите область определения функции 1) $y = \frac{\sqrt{x}}{x^2 - 1}$, 2) $y = \sqrt{1 - \left(\frac{1}{3}\right)^{\frac{x}{2} + 2}}$.		
4	Установите область определения функции 1) $y = \log_{\frac{1}{3}} (6x - 3x^2)$, 2) $y = \sqrt{\frac{x - 3}{x^2 + x - 6}}$.		
5	Установите множество значений функции 1) $y = \frac{1}{2}\sin^2 x$, 2) $y = \frac{1}{\sqrt{3 - \frac{x}{x + 2}}}$.		
6	Установите множество значений функции, заданной на отрезке $y = \frac{2\sqrt{1-\sin x}}{\mathrm{tg}x}, \ x \in \left[\frac{\pi}{6}, \frac{\pi}{4}\right].$		
7	Укажите номера периодических функций 1) $y = \lg(\sin x + 2)$, 2) $y = (\lg x - 1)^2$, 3) $y = 2^x \sin x$, 4) $y = 5^{-\cos x}$.		
8	Укажите номера четных функций 1) $y=x^4-tg^22x$, 2) $y=x^2(1+3^{2x})$, 3) $y=(x^4+1)\ln x$ 4) $y=\frac{\sin x}{1+\cos x}$.		
9	Укажите номера нечетных функций 1) $y = \frac{x+1}{x^2+1}$, 2) $y = (x^2+3)tg^32x$, 3) $y = ln\left(\frac{1-\sin x}{1+\sin x}\right)$ 4) $y = \frac{\sin x}{1+\cos x}$.		
10	Найдите $\varphi(x)$ и вычислите $\varphi\left(\frac{1}{2}\right)$, если $f(x) = 3x + 1$, $f(j(x)) = \frac{1}{2x}$.		

Функции

No	Задание		
задания	у		
1	Укажите номера верных неравенств, если график квадратичной функции $y = ax^2 + bx + c$, $D = b^2 - 4ac$ имеет вид: 1) $ab > 0$, 2) $ac > 0$ 3) $bD < 0$, 4) $cD > 0$, 5) $aD < 0$.		
2	Найдите $n, n \in \mathbb{Z}$ если известно, что абсцисса точки пересечения графиков функций $y = x^2 - 3$ и $y = \log_{\frac{1}{2}} x$ принадлежит интервалу $(n, n+1)$.		
3	Установите область определения функции 1) $y = \frac{x-2}{x-\sqrt{x}}$, 2) $y = \sqrt{1-\left(\frac{1}{5}\right)^{2-3x}}$.		
4	Установите область определения функции 1) $y = \lg \lg x$, 2) $y = \log_2 \left(1 - \frac{x}{2x - 3}\right)$		
5	Установите множество значений функции 1) $y = -3 \arctan(x-1)$, 2) $y = \sqrt{\frac{x-1}{x+3}}$.		
6	Установите множество значений функции, заданной на промежутке 1) $y = 3^{ x } - \frac{4x}{ x }$, $ x \le 1$.		
7	Укажите номера периодических функций 1) $y = 2^{\sin x}$, 2) $y = (x+1)^{\sin x}$, 3) $y = \operatorname{tg}(x^2 + x)$, 4) $y = \cos\left(x^{12} + \frac{p}{3}\right)$.		
8	Укажите номера четных функций 1) $y = 4^{\cos 2x - 1}$, 2) $y = \sin 2x \cdot tg2x$, 3) $y = \frac{2^{\sin x} + 1}{2^{\sin x} - 1}$, 4) $y = \frac{ x - 1 }{\sqrt{x^2 + x + 1}}$.		
9	Укажите номера нечетных функций 1) $y=x^2-x^3$, 2) $y=\frac{\text{tg}3x}{x^4+\cos 2x}$, 3) $y=(x^2+1)\sin 4x$, 4) $y=x\lg(x^2+1)$.		
10	Найдите $f(\varphi(x))$ и вычислите значение $f(\varphi(x_0))$, если $f(x) = \frac{x-1}{x}$, $f(x) = \frac{1}{x}$, $f(x) $		

Функции Ответы

Фун	Функции Ответы			веты
№ вар. № за- дания	1	2	3	4
1	4	5	3	2 и 5
2	0	-1	3	1
		r \) ()' () ('+∞	1) $(0;1) \cup (1;+\infty)$ 2) $\left(-\infty;\frac{2}{3}\right]$
	1) $(-\infty, -2) \cup (2, +\infty)$ 2) $\left(\frac{-1-\sqrt{5}}{2}; 0\right] \cup \left(\frac{-1+\sqrt{5}}{2}; +\infty\right)$	1) (0;5) 2) (-∞,-5)√(-2;+∞)	II) (U:Z)	1) $(1;+\infty)$ 2) $\left(-\infty;\frac{3}{2}\right) \cup (3;+\infty)$
		/ [/]	1) $\left[0; \frac{1}{2}\right]$ 2) $\left(0; \frac{1}{\sqrt{2}}\right) \cup \left(\frac{1}{\sqrt{2}}; +\infty\right)$	1) $\left(-\frac{3p}{2}; \frac{3p}{2}\right)$ 2) $[0;1) \cup (1;+\infty)$
6	$\left[\frac{3}{5};1\right]$	$\left[-2; \frac{\log_2 e}{e}\right]$	$\left[\sqrt{4-2\sqrt{2}};\sqrt{6}\right]$	(-3;-1] \cup (5;7]
7	1,2,4	1,3	1,2,4	1
8	1,2	3	1,3	1,2
9	1	1,3,4	3,4	2,3,4
10	$\frac{1+3x}{2x}; \frac{8}{5}$	$\frac{x+1}{x-1};3$	$\frac{1-2x}{6x};0$	1-x;-2

Производ	дные — — — — — — — — — — — — — — — — — — —		
<u>№</u> задания	Задание		
	Найдите производные функций:		
1	1) $y = e^{-x} + 3x^6$,		
	$ 2) y = x^2 2^x$.		
	Найдите производные функций:		
	r^2-1		
2	$1) y = \frac{x}{5} + \frac{1}{2}$		
2	5x-2		
	$2) y = \frac{x \sin 3x}{x}.$		
	1) $y = \frac{x^2 - 1}{5x - 2}$, 2) $y = \frac{x \sin 3x}{\ln x - 1}$.		
3	Найдите $f\left(\frac{\pi}{2}\right)$ если $f(x) = p^2 x - 2 \cdot \frac{x^3 - 1}{\sin x}$.		
_	$\left(\begin{array}{c} 1 & 1 & 1 \\ 2 & 1 & 1 \end{array}\right) \left(\begin{array}{c} 1 & 1 \\ 2 & 1 \end{array}\right) \left(\begin{array}{c} 1 & 1 \end{array}\right) \left(\begin{array}{c}$		
	Касательная к графику функции $y = -x^2 - 4x + 1$		
4	параллельна касательной к графику функции $y = x^2 - 2x$		
	в точке с абсциссой $x = 1$. Найдите абсциссу точки		
	касания.		
	Найдите координаты точки пересечения касательной к		
5	графику функции $y = 16 - 2^{x-2}$, имеющей угловой		
	коэффициент (-2 ln 2), с осью абсцисс.		
	$\frac{1}{2x}$		
6	Найдите экстремумы функции $f(x) = \frac{2x}{x^2 + 1}$.		
_	Найдите наименьшее и наибольшее значения функции		
7	$f(x) = x^3 - 3x^2$ на отрезке [-4;1].		
	Найдите интервалы убывания функции		
8			
	$f(x) = \frac{x^3}{3} - 4x.$		
9	При каком наибольшем значении а функция		
	$f(x) = \frac{2}{3}x^3 - ax^2 + 7ax + 5$ возрастает на всей числовой		
	оси.		
10	Участок площади 12,5 имеет форму прямоугольника,		
10	завершенного полукругом. Установите, при каком радиусе		
	полукруга периметр участка будет наименьшим.		

производ	дные — — — — — — — — — — — — — — — — — — —		
№ задания	Задание		
1	Найдите производные функций:		
	1) $y = x^3 + 2e^{-x}$,		
	2) $y = (x+2)\sin x$.		
	Найдите производные функций:		
	$1) y = \frac{2^{-x}}{\ln x},$		
2			
	$2) y = \frac{\ln x}{\sin x} + 7\sqrt{x^3 + 2}.$		
	$\sin x$		
3	Найдите $f'(-\pi)$, если $f(x) = e^x(1 + \sin x)$.		
	Найдите абсциссу точки, в которой касательная к		
4	графику функции $y = -\sqrt{x+1}$ параллельна прямой		
4	1 2		
	$y = -\frac{1}{8}x - 3$.		
	Запишите уравнение касательной к графику функции		
5	$y = (x+1)(x^2+1)$ в точке его пересечения с осью		
	абециес.		
	Найдите экстремумы функции		
6	f(w) = 4		
	$f(x) = x + \frac{4}{x^2}.$		
_	Найдите наименьшее и наибольшее значения функции		
7	$f(x) = x^3 - 12x$ на отрезке [-1;3].		
	Найдите длину промежутка возрастания функции		
8	f(x) = 5x		
	$f(x) = \frac{5x}{x^2 + 1}.$		
	При каком наибольшем значении а функция		
9	$f(x) = -\frac{2}{3}x^3 + ax^2 - 3ax - 11$ убывает на всей		
	$3 \qquad 3 \qquad$		
	числовой оси.		
	Найдите наибольшую возможную площадь		
10	параллелограмма с острым углом 30° и периметром		
	8 см.		

№ задания	Задание
эидиння	Найдите производные функций:
1	1) $y = 3x^5 - e^{2x-2}$,
	2) $y = (\sqrt{x} + 1)\ln(2x)$.
	Найдите производные функций:
2	$1) y = \frac{\sin x}{x^2 + 3},$
	2) $y = \frac{e^{-x}}{x} + \frac{4x}{\sqrt{x} - 2}$.
3	Найдите $f'(1)$, если $f(x) = \frac{3 \cdot 2^x}{\ln 2} - \frac{x}{x^2 + 1}$.
	Найдите координаты точки пересечения касательной к
4	графику функции $y = 6.4\sqrt{x-3}$, имеющей угловой
	коэффициент 1,6, с осью абсцисс.
	Касательные, проведенные к графику функции
5	$y = \frac{1}{x+1}$ в точке с абсциссами 3 и x_0 , параллельны.
Найдите x_0 .	
	Найдите максимум функции
6	$f(x) = \frac{x^4}{2} + x^3 - x^2 + 1.$
7	Найдите наименьшее и наибольшее значения функции
/	$f(x) = x^3 - 3x^2$ на отрезке [1;3]. Найдите общую длину интервалов убывания функции
	Найдите общую длину интервалов убывания функции
8	$f(x) = \frac{x^3}{6} + \frac{x^2}{4} - x .$
	При каком наибольшем значении a функция
9	$f(x) = \frac{2}{3}x^3 - ax^2 + ax + 7$ возрастает на всей
	числовой оси.
10	Найдите число, максимально превышающее свой
_ ~	квадрат.

Лоизвод			
задания	Задание		
	Найдите производные функций:		
1	1) $y = \frac{1}{4}x^4 + 2e^{-x}$,		
	$2) y = 3\cos x \cdot e^x.$		
	Найдите производные функций:		
	1) $y = \frac{x^2 + 2x}{2\sqrt{x} + 5}$,		
2	$\int_{0}^{1} y = 2\sqrt{x} + 5$		
	$2) y = \frac{2x\cos x}{x^2 + x}.$		
	$x^2 + x$		
3	Найдите $f'(0)$, если $f(x) = (x^3 - x)e^x$.		
4	Запишите уравнение касательной к графику		
4	$y = 3 \ln x - 0.5x$ в точке с абсциссой $x = 3$.		
	Касательная, проведенная к графику функции		
5	$y = x^3 + x^2$, в точке с абсциссой x_0 параллельна		
	касательной к этой же функции, проведенной в точке с		
	абсциссой 0. Найдите x_0 .		
	Сколько максимумов имеет функция		
6	$f(x) = x^2 + \frac{1}{x^2} - 2?$		
	Найдите наименьшее и наибольшее значения функции		
7	$f(x) = -\frac{x^3}{5} + x + 4$ на отрезке $\left[-2; \frac{1}{2}\right]$.		
8	Найдите интервалы монотонного возрастания функции		
O	$f(x) = 3x^2 - x^3.$		
	При каком наибольшем значении a функция		
9	$f(x) = -\frac{1}{2}x^3 + ax^2 - 4ax + 3$ убывает на всей		
	числовой оси.		
10	Найдите максимально возможную площадь участка, если он имеет форму прямоугольной трапеции с		
10	острым углом 30° периметром 24.		
	oorpoint gratom so morninorpoin 24.		

Производные Ответы

Производные Ответы		
№ вар. № зада- ния	1	2
1	1) $-e^{-x} + 18x^5$ 2) $2x2^x + x^2 2^x \ln 2$	1) $3x^2 - 2e^{-x}$ 2) $\sin x + (x+2)\cos x$
2	$1) \frac{5x^2 - 4x + 5}{(5x - 2)^2}$	$ \frac{-2^{-x} \ln 2 \ln x - \frac{1}{x} 2^{-x}}{\ln^2 x} $ $ \frac{1}{\sin^2 x} - \frac{1}{\sin^2 x} + \frac{21x^2}{2\sqrt{x^3 + 2}} $
3	$-\frac{p^2}{2}$	0
4	-2	15
5	$\left(\frac{7+3\ln 2}{\ln 2},0\right)$	y=2x+2
6	-1; 1	3
7	-112; 0	-16; 11
8	(-2,2)	2
9	14	6
10	2,5	2

№ вар. № зада-	3	4
- Види		
1	1) $15x^4 - 2e^{2x-2}$ 2) $\frac{\ln 2x}{2\sqrt{x}} + \frac{\sqrt{x}+1}{x}$	1) $x^3 - 2e^{-x}$ 2) $-3e^x \sin x + 3e^x \cos x$
	1) $\frac{\cos x(x^2+3) - 2x\sin x}{(x^2+3)^2}$	$(2x+2)(2\sqrt{x}+5) - \frac{x^2+2x}{\sqrt{x}}$ $(2\sqrt{x}+5)^2$
2	$\frac{-xe^{-x} - e^{-x}}{x^{2}} + \frac{4(\sqrt{x} - 2) - 2\sqrt{x}}{(\sqrt{x} - 2)^{2}}$	$\frac{(2\cos x - 2x\sin x)}{x^2 + x} - \frac{2x\cos x(2x+1)}{(x^2 + x)^2}$
3	6	-1
4	(-1;0)	$y = \frac{x}{2} + 3\ln 3 - 3$
5	-5	$-\frac{2}{3}$
6	1	0
7	-4; 0	3,2; 8,4
8	3	(0,2)
9	2	6
10	0,5	24

первооо	разные вар
№ задания	Задание
1	Постройте график функции $f(x)$ на отрезке $[-3;3]$, если $f(0)=0$, а график $f'(x)$ на этом отрезке имеет вид:
2	Найдите первообразную функции 1) $f(x) = x - \sin x$, 2) $f(x) = x - \frac{1}{x}$.
3	Найдите первообразную функции 1) $f(x) = \frac{x^2}{2} - e^x$, 2) $f(x) = \sin x + 2^x$.
4	Найдите первообразную функции $f(x) = 9x^2 - \cos 2x$, если известно, что $F\left(\frac{\pi}{2}\right) = 0$.
5	Найдите первообразную функции $f(x) = 3\sin x$, проходящую через точку $M(\pi,1)$.
6	Вычислите $\int_{0}^{1} \frac{dx}{\sqrt[3]{1+2x}}$. Вычислите $\int_{0}^{0} e^{x+1} dx$.
7	Вычислите $\int_{-1}^{0} e^{x+1} dx.$
8	Вычислите площадь фигуры, ограниченной линиями $y = \frac{1}{x}, y = 0, x = 1, x = e$.
9	Вычислите площадь фигуры, ограниченной линиями $y = x^3$, $y = \sqrt{x}$.
10	Скорость точки, движущейся прямолинейно, определяется по равенству $v = \frac{1}{t+1}$, $[v] = \frac{M}{c}$. Найдите путь, пройденный точкой за первые 9 с.

тервооора	зные				
№ задания	Задание				
1	Постройте график функции $f(x)$ на отрезке [-1;3], если $f(0) = -\frac{1}{2}$, а график $f'(x)$ на этом отрезке имеет вид:				
2	Найдите первообразную функции 1) $f(x) = x^3 + \sin x$, 2) $f(x) = x^2 - \frac{1}{\sqrt{x}}$.				
3	Найдите первообразную функции 1) $f(x) = 2^x - x^2$, 2) $f(x) = x - e^x$.				
4	Найдите первообразную функции $f(x) = -2 + \cos x$, если известно, что $F(0) = -1$.				
5	Найдите первообразную функции $f(x) = \sin x + 2$, проходящую через точку $M\left(\frac{\pi}{2}, 2\pi\right)$.				
6	Вычислите $\int_{0}^{0.5} \sqrt{1-x} dx$.				
7	Вычислите $\int_{-\pi}^{2\pi} \sin \frac{x}{2} dx.$				
8	Вычислите площадь фигуры, ограниченной линиями $y = 1 + \cos x$, $y = 0$, $x = 0$, $x = \pi$.				
9	Вычислите площадь фигуры, ограниченной линиями $y = x^2 + 1$, $y = 3 - x$.				
10	Скорость точки, движущейся прямолинейно, определяется по равенству $v=e^{-t}$, $[v]=\frac{\mathrm{M}}{\mathrm{c}}$. Найдите путь, пройденный точкой от начала движения до момента $t=\ln 2$ с.				

тервооора	Зные					
№ задания	Задание					
1	Постройте график функции $f(x)$ На отрезке $[-3;3]$, если $f(0) = 0$, а график $f'(x)$ на этом отрезке имеет вид:					
2	Найдите первообразную функции 1) $f(x) = \cos x - 3x^2$, 2) $f(x) = \sqrt{x^3} - x$.					
3	Найдите первообразную функции 1) $f(x) = \frac{1}{\sqrt{x}} - e^x$, $2) f(x) = \cos x + 2^x$.					
4	Найдите первообразную функции $f(x) = \sin x + 5x^4$, если известно, что $F(0) = 3$.					
5	Найдите первообразную функции $f(x) = 2 + \sin x$, проходящую через точку $M\left(\frac{\pi}{2},0\right)$.					
6	Вычислите $\int_{0}^{1} \frac{dx}{(x+1)^3}.$					
7	Вычислите $\int_{1}^{22} \frac{dx}{3x-2}.$					
8	Вычислите площадь фигуры, ограниченной линиями $y = \sqrt{x}, y = 0, x = 4, x = 9$.					
9	Вычислите площадь фигуры, ограниченной линиями $y = x^4$, $y = x$.					
10	Тело движется прямолинейно, со скоростью $v = \sqrt[3]{1+t} \ , \ [v] = \frac{M}{c} \ .$ Найдите путь, пройденный телом за первые 7 с.					

<u> гервооора</u>	зные ва					
№ задания	Задание					
1	Постройте график функции $f(x)$ на отрезке $[-2;4]$, если $f(0)=0$, а график $f'(x)$ на этом отрезке имеет вид:					
2	Найдите первообразную функции 1) $f(x) = \sin x + 2x$, 2) $f(x) = 2 + \frac{1}{\sqrt{x^3}}$.					
3	Найдите первообразную функции 1) $f(x) = \frac{1}{x} + 3^x$, $2) f(x) = e^x - \sin x$.					
4	Найдите первообразную функции $f(x) = e^x + x^2$, если известно, что $F(0) = 2$.					
5	Найдите первообразную функции $f(x) = 0.5e^x$, проходящую через точку $M(0.2)$.					
6	Вычислите $\int_{8}^{27} \frac{dx}{\sqrt[3]{x^2}}$.					
7	Вычислите $\int_{0}^{\pi} \cos\left(\frac{2\pi}{3} - 3x\right) dx.$					
8	Вычислите площадь фигуры, ограниченной линиями $y = x^3$, $y = 0$, $x = 1$, $x = 2$.					
9	Вычислите площадь фигуры, ограниченной линиями $y = \frac{5}{x}, y = 6 - x$.					
10	Тело движется прямолинейно, со скоростью равенству $v=2t^2+3t$, $[v]=\frac{\mathrm{M}}{\mathrm{c}}$. Найдите путь, пройденный телом за отрезок времени от $t_1=1$ с до $t_2=4$ с.					

Ответы

Первооб	разные			Ответы	
№ вар. № за- дания	1	1 2		4	
1	-3 -2 -1 0 1 2 3 x	J, Z	-3-2 -1 0 1 2 3 x -2 -2	'	
2	1) $\frac{x^2}{2} + \cos x$, 2) $\frac{x^2}{2} - \ln x $	1) $\frac{x^4}{4} - \cos x$, 2) $\frac{x^3}{3} - 2\sqrt{x}$	1) $\sin x - x^3$, 2) $\frac{2}{5}x^{\frac{5}{2}} - \frac{x^2}{2}$	1) $-\cos x + x^2$, 2) $2x - 2\frac{1}{\sqrt{x}}$	
3	1) $\frac{x^2}{2} + \cos x$, 2) $\frac{x^2}{2} - \ln x $ 1) $\frac{x^3}{6} - e^x$, 2) $-\cos x + \frac{2^x}{\ln 2}$	1) $\frac{2^{x}}{\ln 2} - \frac{x^{3}}{3}$, 2) $\frac{x^{2}}{2} - e^{x}$	1) $2\sqrt{x} - e^x$, 2) $\sin x + \frac{2^x}{\ln 2}$	1) $\ln x + \frac{3^x}{\ln 3}$, 2) $e^x + \cos x$	
4	$3x^{3} - \frac{1}{2}\sin 2x - \frac{3}{8}\pi^{3}$	$-2x + \sin x - 1$	$4 - \cos x + x^5$	$e^x + \frac{x^3}{3} + 1$	
5	$-3\cos x - 2$	$-\cos x + 2x + \pi$	$2x - \cos x - p$	$\frac{1}{2}(e^x+3)$	
6	$\frac{3}{4}\left(\sqrt[3]{9}-1\right)$	$\frac{2}{3}\left(1-\frac{\sqrt{2}}{4}\right)$	$\frac{3}{8}$	3	
7	e-1	2	2 ln 2	$\frac{\sqrt{3}}{3}$	
8	1	π	$\frac{38}{3}$	3 15 4	
9	$\frac{5}{12}$	4,5	0,3	12-5ln5	
10	ln10	$\frac{1}{2}$	11,25	64,5	

КОНТРОЛЬНЫЕ ТЕСТЫ К РАЗДЕЛУ 12

TECT 1

No	TEGIT						
задания	Задание						
1	Верно ли, что точка $x_0 = 4$ принадлежит множеству						
	определения функции $y = \lg\left(1 - \frac{2x-1}{x+3}\right)$?						
2	Верно ли, что график функции $y = \frac{x-1}{3x+5}$ проходит через точку $(-1;-1)$?						
3	Верно ли, что произведение функций $y = \sin 5x$ и $y = x^5$ есть четная функция?						
4	Верно ли, что сумма четной и нечетной функции есть функция нечетная?						
5	Верно ли, что функция $y = \sin 3x \cos 2x$ является периодической функцией?						
6	Верно ли, что графики функций $y = 2x + 2$ и $y = ax - 1$ при $a = -1$ не имеют общих точек?						
7	Верно ли, что графики функций $y = -2x + 3$ и $y = x + 3$ пересекаются в точке $(-2; 1)$?						
8	Верно ли равенство $f(x) = g(x)$, если $f(x) = (1-x)(1+x)$, $g(x) = (1-x^2)$?						
9	Верно ли равенство $f(x) = g(x)$, если $f(x) = x^7$, $g(x) = x ^7$?						
10	Верно ли, что найдется функция $y = ax + 1$, $a \ne 0$, имеющая отрицательный корень?						
11	Верно ли, что не существует функции вида $y = ax^2 + x + 1$, $a \neq 0$, равной единице при положительных значениях x ?						
12	Верно ли, что найдется значение a , при котором функция $y = x^2 + ax - 1$ равна -1 только при одном значении x ?						
13	Верно ли, что найдется такое значение a , при котором функция						
	$y = x^2 + ax - 1$ отрицательна на промежутке (0; 1)?						
14	Верно ли, что если $f(x) = \frac{1}{x}$, то $f(f(x)) = x$? Верно ли, что если $f(x) = x $, то $f(f(x)) = x$?						
15	Верно ли, что если $f(x) = x $, то $f(f(x)) = x$?						

16	Верно ли, что функция $y = \frac{x^2 - 1}{ x - 1}$ имеет корень на отрезке					
	[-1; 1]?					
17	Верно ли, что найдутся такие значения a , при которых точки (0;					
	1) и (-1;0) принадлежат графику функции $y = \frac{x+a}{x-1}$?					
1.0	<i>x</i> 1					
18	Верно ли, что для любого κ существует положительное значение					
	x , при котором $f(x) = x^2 - 1$ равно $g(x) = \kappa x + 1$?					
19	Верно ли, что для любого отрицательного значения κ					
	_					
	существует единственное значение x , при котором $f(x) = x^2 - 1$ равно $g(x) = \kappa x - 1$?					
20	$\int (x) - x - 1 \text{ pasho } g(x) - kx - 1?$					
20	Верно ли, что производная функции $f(x) = \ln \operatorname{tg} \frac{x}{2}$ в точке					
	π					
	$x_0 = \frac{\pi}{2}$ pabha 1?					
21						
21	Верно ли, что производная функции $f(x) = 2^{x-2x^2-1}$ в точке					
	1					
	$x_0 = 0$ равна $\frac{1}{2}$?					
22	Верно ли, что производная функции $f(x) = x^2 \cos x$ в точке					
	$x_0 = \pi$ равна 2π ?					
23	Верно ли, что функция $f(x) = \frac{1}{(x-1)^2}$ дифференцируема в					
	точке $x_0 = 1$?					
24	Верно ли, что функция $f(x) = tg\pi \left(x - \frac{1}{2}\right)$ дифференцируема в					
	точке $x_0 = 0$?					
25	Верно ли, что функция $f(x) = x^3 + 4x$ возрастает при всех					
	значениях аргумента?					
26						
	Верно ли, что функция $f(x) = \frac{1}{x^2} - \frac{1}{x^3}$ убывает на интервале					
	$(-\infty,0)$?					
27	Верно ли, что множество значений производной функции					
	$f(x) = \sin x$					
	$f(x) = \frac{\sin x}{1 + \cos x} $ есть промежуток (0; 2]?					
28	Верно ли, что угловой коэффициент касательной к графику					

	функции $f(x) = \frac{4}{x} + \sqrt{x}$ в точке с абсциссой $x_0 = 4$ равен 0?						
29	Верно ли, что угловой коэффициент касательной к графику						
	функции $f(x) = 2x^3 - 2x^2 + x - 1$ равен 3 в двух точках?						
30	Верно ли, что точка $x_0 = -2$ является точкой максимума						
	функции $f(x) = x + \frac{4}{x^2}$?						
31	Верно ли, что число точек экстремумов функции, производная						
	которой $f'(x) = (x+3)(x-1)^2(x-2)$,						
	равно двум?						
32	Верно ли, что суммарная длина интервалов убывания функции,						
	производная которой $f'(x) = x(x^2 - 4)(x + 3)$, равна 3?						
33	Верно ли, что максимум функции $f(x) = 9x^2 - x^3 - 24$ равен 84?						
34	Верно ли, что наименьшее значение функции						
	$f(x) = 4 \qquad \text{vs. armsays} [0, 2] \text{ ranks } 2^{2}$						
	$f(x) = \frac{4}{x^2 - 2x + 2}$ на отрезке [0, 2] равно 2?						
35	Верно ли, что все значения функции $f(x) = x^3 - 3x^2 + 2$ на						
	отрезке $[-1, 2]$ удовлетворяют неравенству $-2 \le f(x) \le 4$?						
36	Верно ли, что функция $g(x) = \ln \sin x$ является первообразной						
	для функции $f(x) = \operatorname{ctg} x$?						
37	Верно ли, что функция $g(x) = \frac{x-1}{x+1}$ является первообразной для						
	функции $f(x) = \frac{1}{(x+1)^2}$?						
38	Верно ли, что первообразная функции $f(x) = x^4$, проходящая						
	через точку $M_0(1,2)$ имеет вид $F(x) = \frac{x^5 + 11}{5}$?						
39	Верно ли, что функция $g(x) = \frac{x}{2}\sqrt{1-x^2} + \frac{1}{2}\arcsin x$ и						
	$\phi(x) = \frac{1}{4}\sin 2(\arccos x) - \frac{1}{2}\arccos x$ являются первообразными						
40	одной функции?						
40	Верно ли, что площадь синусоиды $f(x) = \sin x$ на полупериоде						
	равна 2?						

TECT 2

Mo	TEGT 2							
№ задания	Задание							
1	Верно ли, что точка $x_0 = -5$ принадлежит множеству							
	определения функции $y = \sqrt{3 - \frac{5x+1}{x-3}}$?							
2	Верно ли, что функция $y = \lg \frac{x-3}{2}$ отрицательна при $x = 4$?							
3	Верно ли, что произведение функций $y = \sin 6x$ и $y = x^6$ есть четная функция?							
4	Верно ли, что сумма двух четных функций есть функция четная?							
5	Верно ли, что функция $y = 3\sin x + \cos 3x$ является							
	периодической функцией?							
6	Верно ли, что графики функций $y = -3ax + 7$ и $y = 2x + 1$ при							
	a = -1 не имеют общих точек?							
7	Верно ли, что графики функций $y = -x + 4$ и $y = 3x - 2$							
	пересекаются в точке (-1; 5)?							
8	Верно ли равенство $f(x) = g(x)$, если							
	$f(x) = (1+x)(1-x+x^2), g(x) = x^3+1$?							
9	Верно ли равенство $f(x) = g(x)$, если $f(x) = x + -x $,							
	g(x) = 2 -x ?							
10	Верно ли, что любая функция вида $y = ax + 1$, $a \neq 0$, при							
	отрицательных значениях x , может быть больше 1 ?							
11	Верно ли, что найдется функция вида $y = ax^2 + x + 1$, $a \neq 0$,							
	имеющая корень, больший, чем 1?							
12	Верно ли, что существует единственное значение a , при котором							
	корни функции $y = x^2 + ax - 1$ равны по модулю?							
13	Верно ли, что при любом значении a , функция $y = x^2 + ax - 1$							
	положительна на промежутке (0; 1)?							
14	Верно ли, что если $f(x) = \frac{1}{ x }$, то $f(f(x)) = x$?							
15	Верно ли, что если $f(x) = 1 - x$, то $f(f(x)) = x$?							
16	Верно ли, что функция $y = \frac{4x^2 - 1}{2x - 1}$ имеет корень на отрезке [-1;							
	1]?							
17	Верно ли, что найдутся такие значения a , при которых точки $(0;$							

	T.
	1) и (-1;0) принадлежат графику функции $y = \frac{x+a}{x-a}$?
18	Верно ли, что для любого κ существует положительное значение
	x , при котором $f(x) = x^2 - 1$ равно $g(x) = \kappa x - 1$?
19	Верно ли, что существует значение κ , при котором $f(x) = x^2 - 1$
	не равно $g(x) = \kappa x + 1$ при всех значениях x ?
20	Верно ли, что производная функции $f(x) = \sqrt{\cos 2x}$ в точке
	$x_0 = \frac{\pi}{6}$ равна $\frac{3}{2}$?
21	Верно ли, что производная функции $f(x) = 3\ln \frac{x-1}{x+1}$ в точке
	$x_0 = 2$ равна 1?
22	Верно ли, что производная функции $f(x) = tg2x - ctg2x$ в
	точке $x_0 = \frac{\pi}{8}$ равна 0?
23	Верно ли, что функция $f(x) = \sqrt{x-1}$ дифференцируема в точке $x_0 = 1$?
24	Верно ли, что функция $f(x) = \ln(x+1)$ дифференцируема в точке $x_0 = 0$?
25	Верно ли, что функция $f(x) = 2x + \sin x$ возрастает при всех
	значениях аргумента?
26	Верно ли, что функция $f(x) = \sqrt{x} + \frac{1}{\sqrt{x}}$ возрастает на всей оси
	области определения?
27	Верно ли, что множество значений производной функции
	$f(x) = \frac{\cos x}{1 + \sin x}$ есть промежуток (-\infty; -2]?
28	Верно ли, что угловой коэффициент касательной к графику
	функции $f(x) = 3^{x-1} + \frac{1}{x} \ln 3$ в точке с абсциссой $x_0 = 1$ равен
	0?
29	Верно ли, что угловой коэффициент касательной к графику

	функции $f(x) = \frac{x-3}{x+1}$ равен 1 в двух точках?
30	Верно ли, что точка $x_0 = -1$ является точкой минимума функции
	$f(x) = 1 + x^2 - \frac{2}{x}$?
31	Верно ли, что число точек экстремумов функции, производная которой $f'(x) = (x+3)(x-1)(x-2)$, равно 2?
32	Верно ли, что число интервалов убывания функции, производная которой $f'(x) = (x-3)(x+1)(x+5)$, равно 2?
33	Верно ли, что минимум функции $f(x) = 9x^2 - x^3 - 24$ равен (-24)?
34	Верно ли, что наименьшее значение функции $f(x) = \frac{6}{x^2 - 2x - 3}$ на отрезке [0, 2] равно 2?
35	Верно ли, что все значения функции $f(x) = x^3 - 6x^2 + 2$ на отрезке [1, 2] удовлетворяют неравенству $-14 \le f(x) \le 2$?
36	Верно ли, что функция $g(x) = \ln \cos x$ является первообразной для функции $f(x) = \lg x$?
37	Верно ли, что функция $g(x) = x\sqrt{1-x^2}$ является первообразной для функции $f(x) = \frac{1}{\sqrt{1-x^2}}$?
38	Верно ли, что первообразная функции $f(x) = \sin 2x$, проходящая через точку $M_0(0,1)$ имеет вид $F(x) = \frac{3-\cos 2x}{2}$?
39	Верно ли, что площадь фигуры, ограниченной параболами $y = x^2$ и $x = y^2$, равна $\frac{1}{3}$?
40	Верно ли, что площадь, ограниченная графиком функции $f(x) = \sin^2 x$ и осью абсцисс на периоде равна $\frac{\pi}{2}$?

Ответы к тестам

Тест 1					Tec	ст 2	ы к теста
No	OTDOT	No	OTROT	No	OTROT	No	OTDOT
задания	ответ	задания	ответ	задания	ответ	задания	ответ
1	нет	21	нет	1	да	21	нет
2	да	22	нет	2	да	22	нет
3	да	23	нет	3	нет	23	нет
4	нет	24	нет	4	да	24	да
5	да	25	да	5	да	25	да
6	нет	26	нет	6	нет	26	да
7	нет	27	нет	7	нет	27	нет
8	да	28	да	8	да	28	да
9	нет	29	да	9	да	29	да
10	да	30	нет	10	нет	30	да
11	нет	31	да	11	да	31	нет
12	да	32	да	12	да	32	да
13	да	33	да	13	нет	33	да
14	да	34	да	14	нет	34	нет
15	нет	35	да	15	да	35	да
16	нет	36	да	16	да	36	нет
17	нет	37	нет	17	нет	37	нет
18	да	38	нет	18	нет	38	да
19	нет	39	да	19	нет	39	да
20	да	40	да	20	нет	40	да

СОДЕРЖАНИЕ

1 АРИФМЕТИЧЕСКИЕ ВЫЧИСЛЕНИЯ. ТОЖДЕСТВЕННЫЕ ПРЕОБРАЗОВАНИЯ	
1.1 ОСНОВНЫЕ ПОНЯТИЯ И ФОРМУЛЫ	
Признаки делимости	
Наибольший общий делитель, наименьшее общее кратное	3
Пропорции	3
Свойства арифметических корней	3
Свойства степеней	
Формулы сокращенного умножения	
Формулы разложения квадратного трехчлена на множители	
1.2 ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ	
1.3 ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ	
1.4 КОНТРОЛЬНЫЕ ЗАДАЧИ ПО ТЕМАМ	
КОНТРОЛЬНЫЕ ТЕСТЫ К РАЗДЕЛУ 1	39
2 КВАДРАТНОЕ УРАВНЕНИЕ. ТЕОРЕМА ВИЕТА. КВАДРАТНЫЙ ТРЕХЧЛЕН	
2.1 ОСНОВНЫЕ ПОНЯТИЯ И ФОРМУЛЫ	
Формулы корней квадратного уравнения	47
Теорема Виета	
Квадратный трехчлен	
Теорема о расположении корней квадратного трехчлена	
2.3 ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ	
2.3 ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО ГЕШЕНИЯ	
3 РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА	63
3.1 ОСНОВНЫЕ ПОНЯТИЯ И ФОРМУЛЫ.	
Рациональные уравнения	
Биквадратное уравнение	63
Симметричные уравнения	
Рациональные неравенства	63
Метод интервалов решения рациональных неравенств	
Модуль	
Уравнения и неравенства с модулем	
3.2 ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ	66
3.3 ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ	
3.4 КОНТРОЛЬНЫЕ ЗАДАЧИ К РАЗДЕЛУ 3	74
4 ИРРАЦИОНАЛЬНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА	94
4.1 ОСНОВНЫЕ ПОНЯТИЯ И ФОРМУЛЫ	
4.2 ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ	95
4.3 ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ	103
4.4 КОНТРОЛЬНЫЕ ЗАДАЧИ ПО ТЕМАМКОНТРОЛЬНЫЕ ТЕСТЫ К РАЗДЕЛАМ 2,3,4	
5 ПРОЦЕНТЫ, ПРОПОРЦИИ, ЗАДАЧИ НА СОСТАВЛЕНИЕ УРАВНЕНИЙ	110
5.1 ОСНОВНЫЕ ПОНЯТИЯ И ФОРМУЛЫ	
Пропорции	117
	117
Проценты	117
Проценты	
Проценты Средние величины Задачи на составление уравнений	117
Проценты	117 120
Проценты Средние величины Задачи на составление уравнений. 5.2 ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ	117 120
Проценты Средние величины Задачи на составление уравнений 5.2 ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ 5.3 ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ 5.4 КОНТРОЛЬНЫЕ ЗАДАЧИ ПО ТЕМАМ 6 ПРОГРЕССИИ	117 120 131
Проценты Средние величины Задачи на составление уравнений 5.2 ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ 5.3 ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ 5.4 КОНТРОЛЬНЫЕ ЗАДАЧИ ПО ТЕМАМ 6 ПРОГРЕССИИ 6.1 ОСНОВНЫЕ ПОНЯТИЯ И ФОРМУЛЫ	117 120 131 134 154 154
Проценты. Средние величины. Задачи на составление уравнений. 5.2 ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ. 5.3 ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. 5.4 КОНТРОЛЬНЫЕ ЗАДАЧИ ПО ТЕМАМ. 6 ПРОГРЕССИИ. 6.1 ОСНОВНЫЕ ПОНЯТИЯ И ФОРМУЛЫ. Арифметическая прогрессия.	117 120 131 134 154 154
Проценты. Средние величины. Задачи на составление уравнений. 5.2 ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ. 5.3 ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. 5.4 КОНТРОЛЬНЫЕ ЗАДАЧИ ПО ТЕМАМ. 6 ПРОГРЕССИИ. 6.1 ОСНОВНЫЕ ПОНЯТИЯ И ФОРМУЛЫ. Арифметическая прогрессия. Геометрическая прогрессия.	117 120 131 134 154 154 154
Проценты. Средние величины. Задачи на составление уравнений. 5.2 ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ. 5.3 ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. 5.4 КОНТРОЛЬНЫЕ ЗАДАЧИ ПО ТЕМАМ. 6 ПРОГРЕССИИ. 6.1 ОСНОВНЫЕ ПОНЯТИЯ И ФОРМУЛЫ. Арифметическая прогрессия. Геометрическая прогрессия. 6.2 ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ.	117 120 131 134 154 154 154 155
Проценты. Средние величины. Задачи на составление уравнений. 5.2 ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ. 5.3 ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. 5.4 КОНТРОЛЬНЫЕ ЗАДАЧИ ПО ТЕМАМ. 6 ПРОГРЕССИИ. 6.1 ОСНОВНЫЕ ПОНЯТИЯ И ФОРМУЛЫ. Арифметическая прогрессия. Геометрическая прогрессия. 6.2 ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ. 6.3 ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ.	117 120 131 134 154 154 154 155 160
Проценты. Средние величины. Задачи на составление уравнений. 5.2 ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ. 5.3 ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. 5.4 КОНТРОЛЬНЫЕ ЗАДАЧИ ПО ТЕМАМ. 6 ПРОГРЕССИИ. 6.1 ОСНОВНЫЕ ПОНЯТИЯ И ФОРМУЛЫ. Арифметическая прогрессия. Геометрическая прогрессия. 6.2 ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ.	117 120 131 134 154 154 154 155 160 162

7.1 ОСНОВНЫЕ ПОНЯТИЯ И ФОРМУЛЫ	174
7.2 ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ	175
7.3 ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ	191
7.4 КОНТРОЛЬНЫЕ ЗАДАЧИ ПО ТЕМАМ	
КОНТРОЛЬНЫЕ ТЕСТЫ К РАЗДЕЛУ 7	
8 ТРИГОНОМЕТРИЯ2	
8.1 ОСНОВНЫЕ ПОНЯТИЯ И ФОРМУЛЫ	
Преобразования тригонометрических выражений и вычисление значений тригонометрических	
функций	.237
Тригонометрические уравнения	239
Тригонометрические неравенства	241
Обратные тригонометрические функции	241
8.2 ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ	243
8.3 ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ	267
8.4 КОНТРОЛЬНЫЕ ЗАДАЧИ ПО ТЕМАМ	273
КОНТРОЛЬНЫЕ ТЕСТЫ К РАЗДЕЛУ 8	298
	305
9.1 ОСНОВНЫЕ ПОНЯТИЯ И ФОРМУЛЫ	305
Три признака равенства треугольников	305
Три признака подобия треугольников	305
Общие свойства треугольников	306
Замечательные точки в треугольнике	
Метрическое соотношения в треугольниках	
Теорема Фалеса	
Свойства параллелограмма	307
Свойства трапеции	308
Свойства окружности, круга сектора и сегмента	308
Свойства касательных, хорд и секущих	309
9.2 ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ	310
9.3 ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ	342
9.4 КОНТРОЛЬНЫЕ ЗАДАЧИ ПО ТЕМАМ	347
КОНТРОЛЬНЫЕ ТЕСТЫ К РАЗДЕЛУ	
10 СТЕРЕОМЕТРИЯ	389
10.1 ОСНОВНЫЕ ПОНЯТИЯ И ФОРМУЛЫ	389
Многогранники	389
Тела вращения	390
10.2 ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ	392
10.3 ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ	
10.4 КОНТРОЛЬНЫЕ ЗАДАЧИ ПО ТЕМАМ	403
11 ВЕКТОРЫ	
11.1 ОСНОВНЫЕ ПОНЯТИЯ И ФОРМУЛЫ	
11.2 ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ	415
11.3 ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ	424
11.4 КОНТРОЛЬНЫЕ ЗАДАЧИ ПО ТЕМАМ	
КОНТРОЛЬНЫЕ ТЕСТЫ К РАЗДЕЛАМ 10,11	
12 ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОГО АНАЛИЗА	
	439
Функции	439
Производная функции	440
Первообразная функции	441
12.2 ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ	442
12.3 ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ	462
12.4 КОНТРОЛЬНЫЕ ЗАДАЧИ ПО ТЕМАМ	467
КОНТРОЛЬНЫЕ ТЕСТЫ К РАЗЛЕЛУ 12	483